Temperature control of nanowire/hexagonal prismatic WO₃ structure with a high performance for photoelectrochemical water oxidation

(*Grad. School of Sci. and Tech., Niigata Univ.*) OTomohiro Katsuki, Debraj Chandra, Yuta Tsubonouchi, Norihisa Hoshino, Zaki Zahran, Masayuki Yagi

Keywords: Semiconductor; Water oxidation; Tungsten oxide; Temperature control; Anisotropic growth

A photoanode capable of efficiently promoting water oxidation is a key essence for realizing a photoelectrochemical (PEC) water splitting cell for hydrogen production. WO₃ is a promising photoanode for PEC water oxidation due to its high oxidation potential. WO₃ photoanodes with specific nanostructures have been actively studied to improve PEC performance for water oxidation, and there are various ways to control the nanostructure. Recently, we reported efficient visible-light-driven water oxidation on an in situ N₂-intercalated WO₃ nanorod photoanode using hydrazine (N₂H₄).¹ In this report, we demonstrate that nanowire (NW) and hexagonal prismatic (HP) WO₃ photoanodes can be easily produced by controlling the synthesis temperature during the synthesis of WO₃ powder using N₂H₄.

 N_2H_4 derived WO₃ ((N₂H₄)WO₃) precursor was synthesized by adding tungstic acid to water at controlled temperatures of 20~45°C and adding N₂H₄·H₂O dropwise with stirring.

The (N₂H₄)WO₃ precursor synthesized at 20°C had a nanowire structure, which transitioned to a hexagonal prismatic structure (45°C) as the synthesis temperature was increased (Fig. 1A). The NW-WO₃ and HP-WO₃ photoanodes were prepared by adding the NW- or HP- (N₂H₄)WO₃ precursor to a methanol solution dissolved in polyethylene glycol, coating it on an ITO substrate, and sintering it at 550°C under an oxygen atmosphere. Interestingly, the WO₃ morphology was maintained after calcination. IPCE at 420 nm (47%) was 3.1 times higher than that of the NW-WO₃ photoanode (15%) (Fig. 1B). Electrochemical impedance spectra and X-ray revealed diffraction that the high PEC performance of the HP-WO₃ electrode was attributed to the crystal structure of the HP-WO₃ particle surface.

Fig. 1 A) SEM images of precursor (left; 20°C, right; 45°C), B) IPCE curves of NW-WO₃ (blue) and HP-WO₃ (red) in HClO₄ (pH 0) at 1.23 V vs. RHE under light irradiation.

 D. Chandra, D. Li, T. Sato, Y. Tanahashi, T. Togashi, M. Ishizaki, M. Kurihara, E. A. Mohamed, Y. Tsubonouchi, Z. N. Zahran, K. Saito, T. Yui, M. Yagi, *ACS Sustainable Chem. Eng.* 2019, 7, 17896-17906.