液膜被覆ガス供給カソード電極を用いた排ガス中希薄 CO₂ の直接電気化学還元

(豊田中研)○竹田 康彦・水野 真太郎・岩田 隆一・森川 健志・加藤 直彦 Gas-fed liquid-covered cathode electrodes used for direct electrochemical reduction of dilute CO₂ in a flue gas

(Toyota Central R&D Labs., Inc.) ○ Yasuhiko Takeda, Shintaro Mizuno, Ryuichi Iwata, Takeshi Morikawa, Naohiko Kato

We are developing highly efficient large-sized artificial photosynthetic cells that reduce CO₂ to organic valuables. The newly designed 1 m²-sized cell consisting of an electrochemical reactor and crystalline silicon solar cells converted CO₂ of 100% concentration to formate with a high conversion efficiency of 10.5%^{1,2}). Thus, the next challenges are long-term durability³ and direct conversion of CO₂ in a flue gas⁴. As for the latter, a low CO₂ concentration and a high O₂ concentration degrade the performance. Although a gas-diffusion electrode secures sufficient CO₂ supply even at a low concentration, O₂ affects fatally. By contrast, an electrode immersed in an electrolyte suffers from CO₂ depletion, whereas a low O₂ solubility mitigates the detriment. To exploit both advantages of these configurations, we developed a cathode electrode covered with a thin electrolyte layer, which is fed with a reaction gas (Fig. 1). In addition, monoethanolamine that is often used for CO₂ capture was added in the electrolyte for more CO₂ supply. Thus, we achieved Faradaic efficiencies of formate production as high as around 70% even under direct feeding of a simulated flue gas (15% CO₂, 4% O₂, N₂ 81% (v/v)). Keywords: Artificial photosynthesis; CO₂ reduction; flue gas; monoethanolamine

 CO_2 を還元して有価物に変換する人工光合成セルの高効率化と大型化の両立に取り組んでいる。電気化学リアクターと結晶シリコン太陽電池を組み合わせた最新の 1 m^2 サイズのセルは、濃度 100%の CO_2 を 10.5%の高い効率でギ酸に変換した 1.21。次の課題は、耐久性の向上と 31、排ガス中の CO_2 の直接変換である 41。後者については、低濃度の CO_2 と高濃度の O_2 が高効率化を妨げる。ガス拡散電極は低濃度であっても十分な CO_2 供給量を確保するものの、 O_2 の悪影響が致命的となる。逆に、電解液に浸漬された電極は溶解度が低い O_2 の悪影響を受けにくいが、 CO_2 の供給不足となる。これらの構成の両方の長所を組み合わせた、薄い電解液層にて覆われた触媒層に反応

ガスが供給される構成を考案した(Fig. 1) 4)。 CO_2 供給を更に促進するため、 CO_2 回収に用いられるモノエタノールアミンを電解液に添加した。これらの結果、疑似排ガス(15% CO_2 ,4% O_2 , N_2 81% (v/v))供給であっても、約 70% の高いギ酸生成ファラデー効率を実現した。

- 1) N. Kato, et al., *Joule* **2021**, *5*, 687. 2) N. Kato, et al., *ACS Sustain. Chem. Eng.* **2021**, *9*, 16031.
- 3) M. Shiozawa, et al., Electrocatalysis 2022, 13, 30.
- 4) Y. Takeda, et al., submitted.

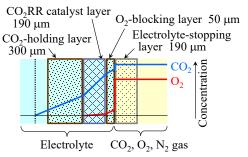


Fig. 1 Multilayered structure of gas-fed liquidcovered cathode electrode, and CO₂ and O₂ concentrations in and around the electrode.