コバルト金属ナノ粒子担持 ZrO₂ を用いたエチレン/プロピレンへの CO/CO₂ 光変換反応機構 (千葉大学¹)○原 慶輔¹・平山 瑠海子¹・石井 蓮音¹・二木 かおり¹・泉 康雄¹ Reaction mechanism of CO/CO₂ photo-conversion into ethylene and propylene using cobalt metal nanoparticles supported on ZrO₂ (¹*Graduate School of Science, Chiba University*) Keisuke Hara¹, Rumiko Hirayama¹, Rento Ishii¹, Kaori Niki¹, Yasuo Izumi¹. Cobalt nanoparticles were supported on monoclinic ZrO₂ and the photocatalyst was reduced under H₂ at various temperatures. Using the combination of ¹³CO₂, ¹³CO, H₂, and/or D₂O and UV–visible light irradiation, ethylene and propylene were major products (Table 1b–d). The reaction mechanism was investigated by in-situ FTIR measurements and DFT calculations using VASP. The results demonstrated that both CO₂ and CO were adsorbed on the ZrO₂ surface, then the H-added COH species transferred onto the metallic Co nanoparticle surface via the interface between them. The CHOH, CH₂, and CH₃ species were favorable on the metallic Co surface. Furthermore, the CHOH and CH₂ species tend to C–C couple resulting in ethylene and propylene as one of the most favorable reaction pathway. On the other hand, non-adiabatic molecular dynamics calculations revealed that the excited electrons transfer owing to light irradiation transferred from ZrO₂ to CO₂ and/or CO on the femtosecond scale. Keywords: Photocatalytic conversion, CO₂ Conversion, DFT calculation, Non-adiabatic molecular dynamics calculation Monoclinic- ZrO_2 にコバルトナノ粒子を担持し、 H_2 雰囲気下での還元温度を変えながら、 $^{13}CO_2$ 及び ^{13}CO 、 H_2 及び D_2O を反応ガスとして用いて、紫外可視光照射したところ、エチレン、プロピレンを主生成物として得た(表 1b–d)。 さらに in-situ FTIR 測定、および VASP を用いた DFT 計算により反応機構を調べた。その結果 CO_2 及び CO いずれも ZrO_2 表面に吸着し、次に H 付加された COH 種が界面を経由してコバルト金属ナノ粒子表面に移行し、 $CHOH \cdot CH_2 \cdot CH_3$ 種が有利に存在することがわかった。さらに CHOH 種と CH_2 種とが C–C 結合しやすく、エチレン、プロピレンに至る経路が有力と認められた。また非断熱分子動力学計算により ZrO_2 からの光励起電子は CO_2 や CO へ fs スケールで移行することも明らかとなった。 Table 1. Kinetic Data on Photoconversion of CO₂ Using the Co (7.5 wt %)–ZrO₂ Photocatalyst | entry | catalyst | reactants | $T_{reduction}$ | formation rate (μ mol h ⁻¹ g _{cat} ⁻¹) | | | | | | |-------|---------------------|---|-----------------|---|-------------------------------|---|-------------------|---|---| | | | | (K) | ¹³ CO | ¹³ CH ₄ | ¹³ C ₂ H ₄ | $^{13}C_{2}H_{6}$ | ¹³ C ₃ H ₆ | ¹³ C ₃ H ₈ | | а | Co–ZrO ₂ | ¹³ CO ₂ (2.3 kPa) + H ₂ (21.7 kPa) | _ | 0.016 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | | b | | | -
- 973
- | 11 | 190 | <0.002 | 3.4 | <0.002 | 0.25 | | С | | ¹³ CO ₂ (2.3 kPa) + H ₂ (2.3 kPa) | | 40 | 52 | <0.002 | 1.1 | <0.002 | 0.082 | | d | | ¹³ CO (2.3 kPa) + H ₂ (21.7 kPa) | | - | 5.2 | 0.17 | 0.58 | 0.72 | 0.96 | | е | | ¹³ CO (2.3 kPa) + H ₂ (2.3 kPa) | | - | 2.2 | 5.2 | 0.17 | 0.23 | 0.024 |