K305-1pm-04

Chemoselective hydrogenation of nitro compounds over Ir-based hybrid clustering catalysts

(¹Department of Science and Engineering, National Museum of Nature and Science, ²Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, ³ESICB, Kyoto University) OShun Hayashi,¹ Tetsuya Shishido^{2,3} **Keywords**: Iridium; Hybrid Cluster; Chemoselective Hydrogenation; Nitro Group

Chemoselective hydrogenation of nitroaromatics to form anilines especially in the presence of other reducible groups such as C=C is one of the important reactions in the production of fine chemicals. Since the catalytic activities of heterogeneous nanoparticle catalysts varies with the adjacent oxide species, forming a high density of metal/oxide interfaces is important to improve the selectivity.^{1,2} We had previously reported a catalyst preparation method, namely hybrid clustering, for the efficient formation of metal/oxide interfacial active sites.³ In this study, supported Ir-based catalysts were prepared by using hybrid clusters as precursors. The effect of the preparation method on the activity for 4-nitrostyrene hydrogenation is discussed in comparison with typical Ir based catalysts.

The hybrid clustering catalyst, Ir₄Mo₄/Al₂O₃, was prepared by using a hybrid cluster, $[(IrCp^*)_4Mo_4O_{16}]$ (Cp* = η^5 -C₅Me₅), as a precursor.⁴ In the 4-nitrostyrene hydrogenation, Ir₄Mo₄/Al₂O₃ selectively reduced the nitro group to produce 4-aminostyrene (Figure 1a). In coimpregnated contrast. the catalyst, Ir-Mo/Al₂O₃, prepared from H₂IrCl₆ and (NH₄)₆Mo₇O₂₄·4H₂O, reduced both nitro and vinyl groups nonselectively (Figure 1b). This suggests that the formation of the Ir/MoO_x interfaces is essential for the selective hydrogenation of nitro groups and that hybrid clustering is an efficient way to form a high density of such interfaces. The local structures and the formation mechanism of the Ir/MoO_x interfaces will be discussed based on X-ray absorption spectroscopy.

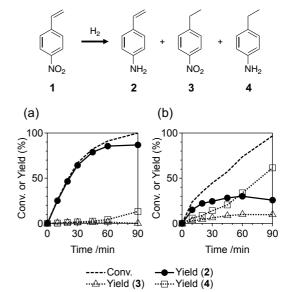


Figure 1. Time course of hydrogenation of 4-nitrostyrene (1) over (a) Ir_4Mo_4/Al_2O_3 and (b) Ir-Mo/Al_2O_3. Reaction conditions: 1 (0.1 mmol), H₂ (0.3 MPa), toluene (1 mL), catalyst (10 mg, Ir: 0.52 mol%), 303 K.

1) Corma, A. et al. J. Am. Chem. Soc. 2008, 130, 8748. 2) Wang, Y. et al. Angew. Chem. Int. Ed. 2020, 59, 12736. 3) Hayashi, S.; Shishido, T. ACS Appl. Mater. Interfaces. 2021, 13, 22332. 4) Hayashi, Y. et al. J. Am. Chem. Soc. 1988, 110, 3666.