Elucidation of molecular adsorption states of strong base metal oxide cluster by X-ray absorption spectroscopy

(¹Graduate School of Science, Tokyo Metropolitan University, ²Japan Synchrotron Radiation Research Institute (JASRI), ³JST PRESTO) ○Tomoki Matsuyama,^{1,2} Hiroki Nagakari,¹ Soichi Kikkawa,¹ Naomi Kawamura,² Kotaro Higashi,² Naoki Nakatani,¹ Seiji Yamazoe^{1,3} **Keywords**: Metal Oxide Cluster; Base Catalyst; Homogeneous Catalyst; HERFD-XAS

Metal oxide clusters consisting of group-V transition metals such as $[M^{V_6}O_{19}]^{8-}$ ($M^{V}=Nb$, Ta) have a strong basicity that is comparable to MgO. Nevertheless, they are not deactivated by molecular adsorption and catalyze Knoevenagel condensation reactions and CO₂ fixation reactions.¹ In this study, we investigated unique molecular adsorption states on $[M^{V_6}O_{19}]^{8-}$ by high-energy-resolved fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) which enables direct observation of the crystal field correlated with structural change.² We have acquired XANES spectra of Nb K- and Ta L₃-edges in the HERFD mode and successfully observed changes in the crystal field attributed to molecular adsorption for the first time.

Tetrabutylammonium salts of $[M_{6}^{V}O_{19}]^{8-}$ were synthesized by a microwave-assisted hydrothermal method in reference to the literature³ and characterized by infrared spectra and electrospray ionization mass spectra. Molecular adsorption states of $[Nb_{6}O_{19}]^{8-}$ (Nb6) were studied by pre-edge peaks in Nb K-edge HERFD-XANES spectra (Fig.a). When 1% CO₂ gas with N₂ balance and acid-base indicators as adsorbents were added to Nb6 DMF solution, the intensity of pre-edge peaks in both XANES spectra decreased compared to the pristine Nb6. These results indicate that CO₂ and protons adsorbed to the same base sites with an increase in their octahedral symmetry. Ta L₃-edge HERFD-XANES spectra (Fig.b) also reflected *d*-orbital splitting affected by molecular adsorption to $[Ta_6O_{19}]^{8-}$ (Ta6). From the increasement of splitting width by CO₂ adsorption, we conclude that Ta6 activated CO₂ accompanied with the increase of the octahedral symmetry near the active site of Ta6 (Fig.c).

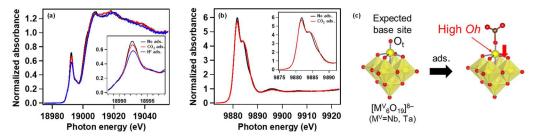


Figure (a) HERFD-XANES spectra at Nb K-edge and (b) those at Ta L_3 -edge. (c) Expected molecular adsorption states.

1) S. Hayashi, N. Sasaki, S. Yamazoe, T. Tsukuda, *J. Phys. Chem. C*, **2018**, *122*, 29398., 2) H. Bao, P. Duan, J. Zhou, H. Cao, J. Li, H. Yu, Z. Jiang, H. Liu, L. Zhang, J. Lin, N. Chen, X. Lin, Y. Liu, Y. Huang, J.-Q. Wang, *Inorg. Chem.*, **2018**, *57*, 11404., 3) M. A. Rambaran, M. Pascual-Borràs, C. A. Ohlin, *Eur. J. Inorg. Chem.*, **2019**, *2019*, 3913.