Tuning interfacial energetics for enhanced H₂O₂ generation

<u>Zhenhua Pan^{1*}</u>, Junie Vequizo², Akira Yamakata³, Chiheng Chu⁴, Kenji Katayama¹ (1. Chuo University, 2. Shinshu University, 3. Okayama University 4. Zhejiang University) *Email: <u>zhenhua.20y@g.chuo-u.ac.jp</u>

Solar-driven H₂O₂ generation over a particulate photocatalyst has attracted much attention. Yet, the efforts in designing high-performance particulate photocatalysts are largely impeded by inefficient charge separation. Because charge separation in a particulate photocatalyst is driven by asymmetric interfacial energetics between its reduction and oxidation sites, enhancing this process demands nanoscale tuning of interfacial energetics on the prerequisite of not impairing the kinetics and selectivity for H₂O₂ generation. In this study, we realized this target with a general strategy involving the application of a core/shell type cocatalyst that is demonstrated on various photocatalytic systems. Particularly, this strategy was highlighted on a BiVO₄ system for overall H₂O₂ photosynthesis. A core/shell type Ag/Pd cocatalyst was selectively deposited on the reduction facets of BiVO₄, where the Ag core formed a low Schottky barrier with BiVO₄ at its reduction site for enhancing charge separation and Pd shell preserved the surface kinetics and selectivity for H_2O_2 generation (Figures 1a-1d). Time-resolved spectroscopy and numerical simulations suggest the BiVO₄/Ag junction enhanced the asymmetric interfacial energetics as expected. With successful interfacial energetics tuning, BiVO₄ exhibits high overall H₂O₂ photosynthesis among inorganic photocatalysts, with an apparent quantum yield (AQY) of 3.0% and a solar-to-H₂O₂ conversion (STH) efficiency of 0.73% at full spectrum, as well as an AQY of 13.1% at 420 nm (Figures 1e-1f).

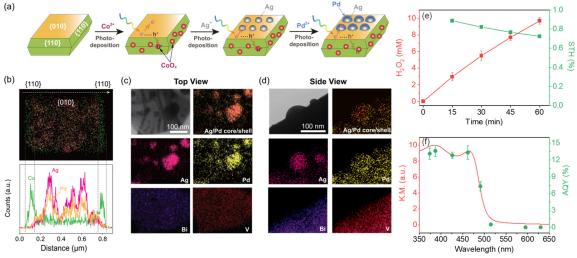


Figure 1 (a) Stepwise and facet-selective photodeposition of Co, Ag and Pd on BiVO₄. (b) EDS elemental mapping and line profile of $CoO_x/BiVO_4/(Ag/Pd)$. (c)-(d) STEM-EDS elemental mapping of Ag/Pd particles loaded on BiVO₄. (e) Time courses of photocatalytic H₂O₂ generation over $CoO_x/BiVO_4/(Ag/Pd)$ and the corresponding STH efficiency. (f) AQY of H₂O₂ photosynthesis over $CoO_x/BiVO_4/(Ag/Pd)$ as a function of the incident light wavelength.

[1] T. Liu, Z. Pan*, J.J.M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu*, K. Domen, Overall photosynthesis of H₂O₂ by an inorganic semiconductor, *Nat. Commun.*, 13 (2022) 1034.

[2] T. Liu, Z. Pan*, K. Kato, J.J.M. Vequizo, R. Yanagi, X. Zheng, W. Yu., A. Yamakata, S. Hu, K. Katayama, C. Chu*, A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis, *Nat. Commun.*, Accepted.