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Material informatics (MI), a new form of materials research that combines materials data
with data science, is gaining traction. MI applies machine learning (ML) to predict new
materials with innovative properties and their fabrication methods from a vast design space.
Over the past few years, MI technologies have spread rapidly in various areas of materials
research, and many new materials have been discovered [1,2]. However, the application of ML
in materials science is lagging behind that in other research areas. Needless to say, data is the
most important resource in data-driven science. However, efforts toward creating a
comprehensive database of material properties to enable data-driven research have been
insufficient. In this talk, I will describe some key technologies of ML to overcome the big
hurdle of limited data.

ML techniques called transfer learning or domain adaptation have the great potential to break
the barrier of limited data [2,3,4,5]. For a given task to be predicted from a limited supply of
training data, a set of models on related tasks are pre-trained using an enough amount of data,
which capture common features relevant to the target task. Re-purposing such features on the
target task brings an outstanding prediction performance even with exceedingly small data as
if highly experienced human experts can perform rational inferences even on considerably less
experienced tasks.

The second topic focuses on ML techniques from adaptive experimental design. Any ML
models are interpolative in nature, and their prediction capability is no longer applicable in
regions where no data are available. However, the ultimate goal of materials science is the
discovery of truly innovative materials, which would reside in yet-unexplored material space
where no one has gone before. A promising solution to this problem is the integration of
computer/physical experiments into a ML system through experimental design techniques such
as Bayesian optimization [5].

I also show the potential of supervised learning for ultra-high-dimensional or functional-type
output variables. In machine learning of material data, the output variable is often given as a
function (Figure 1). For example, when predicting the optical absorption spectrum of a
molecule, the output variable is given as a spectral function defined in the wavelength domain.
Alternatively, in predicting the microstructure of a composite material, the output variable is
given as an image from an electron microscope, which can be represented as a two- or three-
dimensional function in the image coordinate system. Here we consider a unified framework
to handle such multidimensional or functional output regressions, which are applicable to a
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wide range of predictive analyses [6]. Of particular interest here is the mechanism of the high
tolerance of the functional output regression to limited data. As shown, the present method
predicting the whole function directly has statistical mechanisms closely related multitask
learning; multiple related tasks are learned simultaneously, allowing the model to recognize
common mechanisms among target tasks and consequently improve the prediction accuracy of
each task. It is demonstrated that a similar learning mechanism is expected to work in
regression with high-dimensional output variables.
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