
Asymmetric Hydrogenation of α-Amino Esters through Dynamic Kinetic Resolution Catalyzed by Ruthenabicyclic Complexes (RUCY®)

(¹Takasago International Corporation, ²Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, ³Frontier Chemistry Center, Hokkaido University) O Hiroki Ishikawa,¹ Taiga Yurino,^{2,3} Ryo Komatsu,² Ming-Yuan Gao,² Noriyoshi Arai,² Taichiro Touge,¹ Kazuhiko Matsumura,¹ Takeshi Ohkuma^{2,3}

Keywords: Ruthenium Complexes; Asymmetric Hydrogenation; Dynamic Kinetic Resolution, Aminoesters; Optically Active Aminoalcohols

Optically active β -substituted β -aminoethanols have been frequently utilized in the synthesis of a wide variety of bioactive compounds, including natural products, medicines, and agrochemicals. Reduction of enantiomerically enriched α -amino esters into the β -amino alcohols with maintenance of the enantiopurity by metal hydride reagent or transition metal catalyst is well-known methods. ¹ However, these procedures are required to prepare the corresponding enantiomerically enriched α -amino esters in advance. We herein report asymmetric hydrogenation of racemic α -substituted α -amino esters into the enantiomerically enriched β -amino alcohols through dynamic kinetic resolution with chiral ruthenabicyclic complexes (RUCY[®]).²

N-PMP (PMP = *p*-methoxyphenyl) protected phenylglycine methyl ester **1a** was selected as a substrate for optimization of catalyst structure and reaction conditions, and the RuCl[(*S*)-daipena][(*R*)-dm-segphos] (R_P , S_N)-**3**/*t*PenONa system was successfully catalyzed the hydrogenation of **1a** to give **2a** in 96% ee. The scope of the reaction was also examined, and a variety of β -aryl- and β -heteroaryl-substituted β -aminoethanols was obtained in high ee (up to 97%). The mechanistic deuteration experiments suggested that the reaction is not a simple ester hydrogenation, but proceeds with 1,2-hydride migration of the α -amino acetalate intermediate into the α -hydroxy imine.

1) See for example: (a) W. Kuriyama *et al.*, *Adv. Synth. Catal.* **2010**, *352*, 92–96. (b) B. M. Widegren *et al.*, *Org. Lett.* **2018**, *20*, 2654–2658.

2) K. Matsumura et al. J. Am. Chem. Soc. 2011, 133, 10696–10699.