Synthesis and photophysical properties of aggregate-formed Eu(III) complex with amide group in solvents

(¹School of Engineering, Hokkaido University, ²Faculty of Engineering, Hokkaido University, ³Institute for Chemical Reaction Design and Discovery, Hokkaido University) ○Yusaku Yamaguchi¹, Sunao Shoji^{2,3}, Wang Menfei³, Yuichi Kitagawa², Koji Fushimi², Yasuchika Hasegawa^{2,3}

Keywords: Europium, Aggregate, Amide

Lanthanide complexes consisted of organic ligands and lanthanide ions exhibit characteristic 4f-4f emission with narrow emission bands and long emission lifetimes. In previous work, a Eu(III) complex that has hydrophilic polyether chains prepared for was bioimaging. The Eu(III) complex was found to form aggregates in water media and showing intensive

Figure 1. Chemical structure of [Eu(ntfa)₃(HEAPO)₂].

luminescence^[1]. In this study, we report on a novel Eu(III) complex with hydrophilic ether chains containing amide groups for conjugating biological molecules in water media (Figure 1).

The Eu(III) complex, [Eu(ntfa)₃(HEAPO)₂], was prepared by complexation of [Eu(ntfa)₃(H₂O)₂] with HEAPO in dichloromethane, and identified by IR, ¹⁹F-NMR, elemental analysis, and mass spectrum. We found that [Eu(ntfa)₃(HEAPO)₂] tends to form aggregates at 1 mM in methanol. [Eu(ntfa)₃(HEAPO)₂] shows 4f-4f emission bands in the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0.4) transitions. The emission lifetimes of [Eu(ntfa)₃(HEAPO)₂] were estimated to be 0.30 ms for 1 mM and 0.22 ms for 0.1 mM. Using the emission spectra and emission lifetimes, emission quantum yields were calculated to be 25% for 1 mM and 16% for 0.1 mM. The relatively high emission quantum yield at 1 mM is considered to originate from the aggregates formed in methanol solution.

[1] M. Kono, and Y. Hasegawa et al., Activity sensing of cancer cells using luminescent Eu complexes in culture solution, Annual Meeting on Photochemistry 2021, The Japanese Photochemistry Association, online, Sep. 14-16 (2021).