## Carbon dioxide gate sorption properties of one-dimensional Cu complexes with paddlewheel dimer units

(<sup>1</sup>Graduate School of Environmental Science, Hokkaido University, <sup>2</sup>Faculty of Environmental Earth Science, Hokkaido University, <sup>3</sup>Research Institute for Electronic Science, Hokkaido University) ○Sihao Xing,<sup>1</sup> Xin Zheng,<sup>2</sup> Kiyonori Takahashi,<sup>3</sup> Takayoshi Nakamura,<sup>3</sup> Shin-ichiro Noro<sup>1,2</sup>

Keywords: One-dimensional metal complex, Gate sorption, Flexibility, Carbon dioxide

In recent decades, with an increasing demand for global energy and concomitant usage of fossil fuels, the concentration of  $CO_2$  in the atmosphere has increased gradually. As this gas is one of the leading greenhouse gas,  $CO_2$  separation and conversion have been considered a research topic with high priority. Polymeric metal complexes such as metal-organic frameworks/coordination polymers have attracted significant attention as  $CO_2$  separation materials due to their high surface area, tunable pore structures, and high flexibility.<sup>1</sup> Previously, our group found  $CO_2$  gate sorption, concomitant gas adsorption and structural change, in the one-dimensional Cu complexes [Cu<sub>2</sub>(2-tc)<sub>4</sub>(L)] (2-tc = 2-thiophenecarboxylate, L = pyrazine (pyz) and aminopyrazine) in the mild condition. In this work, we synthesized a series of their derivatives to investigate the effect of functional groups of the pyz ligand on  $CO_2$  gate sorption properties.

The one-dimensional Cu complexes,  $[Cu_2(2-tc)_4(2,3-dmpyz)]$ ,  $[Cu_2(2-tc)_4(2,5-dmpyz)]$ , and  $[Cu_2(2-tc)_4(2-epyz)]$  (2,3-dmpyz = 2,3-dimethylpyrazine, 2,5-dmpyz = 2,5dimethylpyrazine, 2-epyz = 2-ethylpyrazine), were prepared and structurally characterized. They exhibited one-dimensional structures, in which paddlewheel Cu(II) dimers were bridged by pyz derivatives.  $[Cu_2(2-tc)_4(2,5-dmpyz)]$  and  $[Cu_2(2-tc)_4(2-epyz)]$  showed CO<sub>2</sub> gate sorption at 195 K, while  $[Cu_2(2-tc)_4(2,3-dmpyz)]$  was unable to show CO<sub>2</sub> gate sorption (Figure 1).

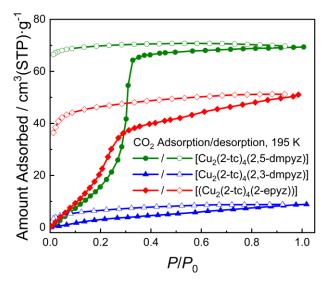



Figure 1. Adsorption/desorption isotherms of CO<sub>2</sub> 195 K.

1) W. Kosaka, et al., Inorg. Chem. 2022, 61, 12698.