Immobilization of Terbium Complex on Solid Surface with Chiral Moiety

(¹*Grad. Sch. Sci., Nagoya Univ.*, ²*Grad. Sch. Sci. Eng., Kindai Univ.* ³*RCMS, Nagoya Univ.*) OSora Shirai,¹Satoshi Muratsugu,¹ Hidetaka Nakai,² Mizuki Tada¹,³

Keywords: Terbium Complex; Chirality; Immobilization; Surface; Circularly Polarized Luminescence

Chiral metal complexes immobilized on solid surfaces are promising for chiral materials such as solid chiral sensors and heterogeneous asymmetric catalysts. The preparation of a new chiral coordination structure on silica solid surface was investigated by the chirality induction of an achiral metal complex and a solid surface modified with chiral moieties. In this study, we report the efficient chirality induction of an achiral Tb complex ($^{R}1_{Tb}$) on a SiO₂ surface modified with chiral ligands (denoted as $L(R/S)/SiO_2$, Figure 1).

A Tb complex with a bulky ligand connecting *t*-butyl groups (^{t-Bu}1_{Tb}) was used for the attachment of chirality-modified silica surface (Figure 1). A triazacyclononane-based tris-phenol with *t*-butyl group (^{t-BuMe}ArOH)3tacn) was newly synthesized and characterized by ¹H NMR and ESI-MS. (^{t-}

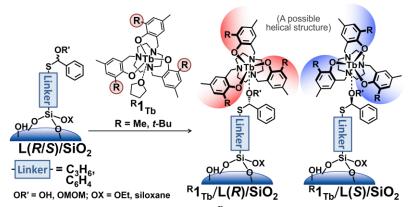
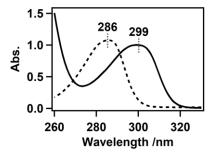



Figure 1. The preparation scheme of R_{1Tb} on L(R/S)/SiO₂.

BuMe ArOH)3 tacn was reacted with Tb(OTf)3 under basic conditions in DMF, and the UV-vis absorption spectra of the obtained crude product showed the significant shift of the peak attributed to π - π * transition from 286 nm to 299 nm (Figure 2), suggesting the formation of ^{t-Bu} 1_{Tb} . A chiral ligand with a rigid phenylene linker structure was synthesized and attached on a silica surface and $^{R}1_{Tb}$ was immobilized on the silica surface as shown in Figure 1. The effect of a rigid linker structure of the surface-attached chiral ligands and the bulky ligand of the Tb complex on the chirality induction on the SiO₂ surface by the immobilization of $^{R}1_{Tb}$ onto $L(R/S)/SiO_2$ will be presented.

Figure 2. Solution-state UV-vis spectra of ($^{t-BuMe}ArOH$)₃tacn (dashed line, 1.3×10^{-4} M in CH₂Cl₂) and that reacted with Tb(OTf)₃ (solid line, 0.20 mg/mL in CH₂Cl₂).