Consideration on Gated CO₂ Adsorption Behavior in One-Dimensional Porous Coordination Polymers of Phenazine-Linked Paddlewheel Diruthenium Complex

(¹Institute for Materials Research, Tohoku University, ²Frontier Research Institute for Interdisciplinary Sciences, Tohoku University) O Wataru Kosaka,¹ Jun Zhang,² Hitoshi Miyasaka¹

Keywords: Gated adsorption; Paddlewheel-type diruthenium complexes; Metal-organic Framework

Low-dimensional coordination polymers such as one-dimensional (1-D) chains often exhibit gated guest sorption accompanying structural transition at a temperature (T_G) ,^{1,2} which is associated with an external pressure of the guest (P_G) characteristic to the material and guest used. This phenomenon can be evaluated in the Clausius–Clapeyron (CC) equation of $d(\ln P_G)/d(1/T_G) = \Delta H_G/R$, where ΔH_G and R are the transition enthalpy and gas constant, respectively. In this study, gated CO₂ adsorption was investigated in a 1-D chain based on a benzoate-bridged paddlewheel diruthenium(II,II) complex with a phenazine (phz) linker, [Ru₂(p-MeOPhCO₂)₄(phz)] (1; p-MeOPhCO₂⁻ = p-anisate).³

Surprisingly, 1 underwent gate-opening (GO)/-closing (GC) at a much higher $T_{GC} = 385$ K under $P_{CO2} = 100$ kPa (Fig. 1a) than those previously reported for such chain compounds, which usually appeared in the temperature range of 200–270 K.^{1.2} CC analyses gave a similar ΔH_G value for these compounds (inset of Fig. 1a), indicating that the transition entropy ΔS_G in each system plays a key role in shifting T_G ; 1 results in a much smaller $|\Delta S_G|$ in the series. The crystal structure of the CO₂-accommodated phase ($1 \supset CO_2$, Fig. 1b) revealed that Only 1 produced a CO₂-accessible 2-D topological pore in its CO₂-adsorbed phase $1 \supset CO_2$ (Fig. 1c). whereas the others reported previously produced 1-D or discrete (0-D) topological pores for CO₂ accommodation. These findings strongly reflect the degree of freedom of CO₂ molecules in pores, which is related to ΔS_G .

Fig. 1 (a) CO₂ adsorption isobar. (b) Structure of 1⊃CO₂. (c) Connolly surface of micropore for 1⊃CO₂.
1) W. Kosaka et al., *J. Am. Chem. Soc.* 2014, *136*, 12304. 2) C. Dou et al., *Chem. Lett.* 2017, *46*, 1288.
3) W. Kosaka et al., *Inorg. Chem.* 2022, *61*, 12698.