A 3D chiral networked MX compound

(¹Graduate School of Science, Kyoto University, ²Japan Synchrotron Radiation Research Institute (JASRI), SPring-8) \bigcirc Hao Liang,¹ Kazuya Otsubo,¹ Yuiga Nakamura,² Shogo Kawaguchi,² Hiroshi Kitagawa¹

Keywords: Metal–Organic Framework; Mixed-Valence Compounds; Ladder Compounds; Crystal Structure; Electronic States

MX-ladder is a new family of metal–organic ladder compound based on mixed-valence halogen-bridged transition-metal complex (MX-chain), which shows unique electronic states, and physical properties.¹ Although we have synthesized a variety of MX-ladder compounds, the so-called two-legged MX-ladder, four-legged MX-tube, and ghost-legged MX-sheet,^{2–5} the development of 3D-extended type MX compound is still challenging. In this work, for the first time, we successfully synthesized a new 3D networked MX-type compound, $[Pt(en)(dpye)I]_2(NO_3)_4$ (en: ethylenediamine, dpye: 1,2-Di(4-pyridyl)ethane).

The target compound was synthesized from following two steps:

(a) $2Pt(en)(NO_3)_2 + 2dpye \rightarrow [Pt(en)(dpye)]_2(NO_3)_4$ (1)

(b) $[Pt(en)(dpye)]_2(NO_3)_4 + I_2 \rightarrow [Pt(en)(dpye)I]_2(NO_3)_4(2)$

Figure 1 shows the X-ray crystal structure of **2** at 100 K. **2** crystallizes in tetragonal $P4_{1}2_{1}2$ or $P4_{3}2_{1}2$ space group due to spontaneous resolution. Macrocyclic Pt units are helically aligned with a 4-fold periodicity along the *c*-axis and bridged by I^{-} with each other to form a 3D networked structure. Focusing on the MX-chain part, the bridging I^{-} sites are disordered with a half occupancy around the midpoint between adjacent Pt ions, indicating that electronic state within one MX-chain is in the mixed-valence charge-density-wave state (CDW: $\cdots Pt^{2^{+}}\cdots I - Pt^{4^{+}}-I\cdots Pt^{2^{+}}\cdots I - Pt^{4^{+}}-I\cdots)$, as also confirmed by optical measurements. Details are presented.

Figure 1. Crystal structure of compound **2** ($P4_12_12$ form). (a) View along *b*-axis. (b) View along *c*-axis. (c) Building block. (d) Two enantiomers. The en unit, H_2O and NO_3^- have been omitted for clarity.

1) Otsubo, K. et al. *CrystEngComm*, **2014**, *16*, 6277. 2) Kobayashi, A. et al. *J. Am. Chem. Soc.*, **2006**, *128*, 12066. 3) Otsubo, K. et al. *Nat. Mater.*, **2011**, *10*, 291. 4) Otake, K. et al. *Nat. Commun.*, **2020**, *11*, 843. 5) Hashiguchi, R. et al. *Angew. Chem., Int. Ed.*, **2017**, *56*, 3838.