Room-temperature Conversion of CO₂ into Metal-Organic Frameworks

(¹*Institute for Advanced Study, Kyoto University,* ²*Graduate School of Engineering, Kyoto University*) OKentaro Kadota¹ and Satoshi Horike^{1,2} **Keywords**: Metal-Organic Frameworks, CO₂ utilization, Porosity

Facile conversion of CO_2 into valuable chemicals and materials is a significant challenge to a carbon-neutral society. CO_2 is an attractive renewable carbon resource with the high natural abundance.¹ Due to the inherent inertness of CO_2 , conversion of CO_2 into functional materials at ambient conditions is a significant challenge regardless of the materials.

Metal–organic frameworks (MOFs) are porous materials that consist of metal ions and bridging linkers. CO_2 storage/separation and catalysts using MOFs have been extensively studied last few decades. On the other hand, MOF synthesis from CO_2 remains unexplored. Carboxylates are a representative MOF linker, e.g. benzene-1,4-dicarboxylate. Meanwhile, the di- or tri-carboxylates, which are suitable as MOF linkers, present difficulties in the synthesis from CO_2 because the high-energy reaction conditions and multistep reactions are required.

We focused on carbamate as a CO₂-derived MOF linker instead of conventional carboxylates. Amines (*R*-NH₂) readily react with CO₂ to produce carbamates (*R*-NCOO⁻). In this work, piperazine (H₂PZ) was employed as a source of CO₂-derived carbamate linker, piperazine 1,4-dicarbamate ([PZ(CO₂)₂] ²⁻: PDC). We demonstrated one-pot, room-temperature synthesis of MOFs, [Zn₄O(PDC)₃] (1), from CO₂ (**Figure 1**). We comprehensively studied the crystal structure of 1 by synchrotron X-ray analysis and the stabilization of PDC in the MOF lattice by temperature-programmed desorption and DFT calculations.²

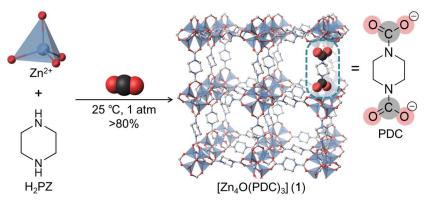


Figure 1. Schematic illustration of formation of 1 via *in situ* conversion of CO₂ into PDC.

1) Q. Liu et al., Nat. Commun., 2015, 6, 5933. 2) K. Kadota et al., J. Am. Chem. Soc., 2021, 143, 16750.