
Regioselective deprotonation of twisted trinuclear macrocycles to control the rate of helicity inversion

(¹*Grad. Sch. of Sci.*; *The Univ. of Tokyo*, ²*IMS*) \bigcirc Tomoki NAKAJIMA,¹ Shohei TASHIRO,¹ Masahiro EHARA,² Mitsuhiko SHIONOYA¹

Keywords: Helicity inversion; Deprotonation; Pd complex; Multinuclear complex; Macrocyclic compound

Molecular motions including translation and rotation are controlled by various external stimuli, such as acid and base, to achieve molecular machines that work reversibly. For example, Stoddart and his co-workers demonstrated reversible translation motion of a molecular shuttle controlled by electrostatic repulsion upon addition of acid and base.^[1] In this study, we aimed to control the inversion rate of a helically twisted trinuclear Pd^{II} complex, $[Pd_3L(^{t}Bu_2bpy)_3](OTf)_6$, by regioselective deprotonation. Indeed, the inversion rate of the deprotonated $[Pd_3(H_{-3}L)(^{t}Bu_2bpy)_3](OTf)_3$ was significantly slowed down. Reversible conversion between the original and deprotonated Pd^{II} complexes by acid and base was also confirmed.

A trinuclear Pd^{II} complex, $[Pd_3L('Bu_2bpy)_3](OTf)_6$, was synthesized by the reaction of a macrocyclic ligand L with a Pd^{II} salt. Single-crystal XRD and ¹H NMR analyses revealed that the macrocyclic framework of the Pd^{II} complex was helically twisted by intramolecular C-H… π interactions. This Pd^{II} complex exhibited helicity inversion between (*P*)- and (*M*)-helicity, with an estimated inversion rate of 3.31 s⁻¹ at 300 K in acetone-*d*₆ by EXSY NMR analysis. The Pd^{II} complex was then reacted with 26 equiv. of Na₂CO₃ and ¹H NMR analysis revealed that only three of the six amine protons of L were site-selectively deprotonated to $[Pd_3(H_{-3}L)('Bu_2bpy)_3](OTf)_3$. Furthermore, the effect of regioselective deprotonation on the helicity inversion rate was investigated using EXSY NMR, and the inversion rate of $[Pd_3(H_{-3}L)('Bu_2bpy)_3](OTf)_3$ was 0.155 s⁻¹ at 300 K in acetone-*d*₆, which is 21 times slower than that of $[Pd_3L('Bu_2bpy)_3](OTf)_6$ due to the intramolecular proton transfer. This presentation will explain the mechanism of helicity inversion.

[1] R. A. Bissell, E. Córdova, A. E. Kaifer, and J. F. Stoddart, Nature 1994, 369, 133-137.