Mechanistic study of photocatalytic CO₂ reduction by a Ru(II)-Re(I) supramolecular photocatalyst

(¹School of Science, Tokyo Institute of Technology, ²Graduate School of Science, Nagoya University, ³Graduate School of Science, Kyushu University, ⁴Graduate School of Advanced Science and Engineering, Hiroshima University) OKei Kamogawa¹, Yuki Kato², Yuushi Shimoda³, Kiyoshi Miyata³, Ken Onda³, Takumi Noguchi², Yusuke Tamaki¹, Osamu Ishitani^{1,4} **Keywords**: Carbon dioxide reduction; Photocatalyst; Reaction mechanism

Photocatalytic CO_2 reduction using visible light as an energy source potentially gives a solution to the energy shortage and global warming problems. Although many researchers have intensively been working on developing CO_2 reduction photocatalysts, one of the significant problems in this field is the insufficiency of mechanistic insights into photocatalysis.

Fig. 1 Structure of RuC2Re

A Ru(II)-Re(I) supramolecular photocatalyst (**RuC2Re**, Fig. 1) consisting of [Ru(diimine)₃]²⁺ redox photosensitizer and *fac*-[Re(diimine)(CO)₃(OC(O)OC₂H₄NR₂)] catalyst can efficiently capture CO₂ and reduce CO₂ to CO with high durability and selectivity.¹ Recently, our group has reported the formation processes of one-electron reduced species (OERS) of the Re unit of **RuC2Re** (**RuC2(Re**)⁻), which is a crucial intermediate in the initial stage of photocatalytic CO₂ reduction, in detail.² However, the mechanism of the subsequent processes after the formation of **RuC2(Re**)⁻ was still unclear.

In this work, we investigated the unknown mechanism of the subsequent processes of $\mathbf{RuC2(Re)}^{-}$, utilizing various methods such as FT-IR spectroscopy and liquid chromatography analysis of photocatalytic reaction solution. The carboxylate complex $\mathbf{RuC2Re(COOH)}$ with a *fac*-Re(diimine)(CO)₃(COOH) unit was successfully detected as a subsequent intermediate of $\mathbf{RuC2(Re)}^{-}$ by using time-resolved infrared spectroscopy combining laser flash photolysis and rapid-scan FT-IR method. This important intermediate was also detected by FT-IR measurements of photocatalytic reaction solution during steady-state light irradiation. Furthermore, it has been clarified that $\mathbf{RuC2Re(COOH)}$ eventually releases CO and OH⁻ and turns into the starting complex $\mathbf{RuC2Re}$. In the presentation, the mechanism of these reactions, including the source of the second electron and the kinetics of each process, will be discussed in detail.

- 1. T. Nakajima, Y. Tamaki, K. Ueno, E. Kato, T. Nishikawa, K. Ohkubo, Y. Yamazaki, T. Morimoto and O. Ishitani, *J. Am. Chem. Soc.*, 2016, **138**, 13818-13821.
- 2. K. Kamogawa, Y. Shimoda, K. Miyata, K. Onda, Y. Yamazaki, Y. Tamaki and O. Ishitani, *Chem. Sci.*, 2021, **12**, 9682-9693.