Energy-Transfer Quenching of [Ru(bpy)₃]²⁺ in Ionic Nanosphere

(¹*Graduate School of Engineering, Kochi University of Technology*) ⁽¹*Graduate School of Engineering, Kochi University of Technology*) ⁽¹*Graduate School of Engineering, Kochi University of Technology*)

Keywords: Metal Complex; Excited-State Energy Transfer; Ionic Polymer; Solid-State Medium

Photoinduced energy- and electron-transfer reactions are primary processes in the solar– energy conversion system such as artificial photosynthesis and solar photovoltaics. Therefore, constructing an efficient photoinduced-reaction system is one of the most important research topics. In this study, we demonstrated energy-transfer quenching of $[Ru(bpy)_3]^{2+}$ by a 9,10diphenylanthracene derivative ([DPA-N₂]²⁺) by codoping in ionic nanospheres,¹ a class of cationic exchange resins with a diameter of <300 nm.

 $[Ru(bpy)_3]^{2+}/[DPA-N_2]^{2+}$ -codoped nanospheres ($[Ru(bpy)_3]^{2+}$: 50 nmol/mg, $[DPA-N_2]^{2+}$: 0–10 nmol/mg) were prepared by soaking the ionic nanosphere with a poly(styrenesulfonateco-divinylbenzene) structure in aqueous solutions of $[Ru(bpy)_3]Cl_2$ and $[DPA-N_2]Cl_2$ at room

temperature. $[Ru(bpy)_3]^{2+}$ doped in the nanosphere exhibited emission from the triplet metal-to-ligand charge transfer excited state with a quantum yield (Φ_{em}) being 0.105, which was higher than that of the aqueous solution ($\Phi_{em} = 0.063$). The emission quantum yield of $[Ru(bpy)_3]^{2+}$ decreased even by 10-nmol/mg $[DPA-N_2]^{2+}$ codoping and, furthermore, an excitation band similar to the absorption band of [DPA-N₂]²⁺ was observed by monitoring at 620 nm. These results are explainable by the excited-state energy transfer between $[Ru(bpy)_3]^{2+}$ and $[DPA-N_2]^{2+}$. The emission from the $[Ru(bpy)_3]^{2+}/[DPA-N_2]^{2+}$ -codoped nanosphere was responsive to the presence of the molecular oxygen as shown in Fig. 1. Upon an increase in an oxygen concentration, the emission from $[Ru(bpy)_3]^{2+}$ was reduced. Since the emission lifetime of [Ru(bpy)₃]²⁺ was also shortened ($<\tau_{em}>$ = 910, 770 and 560 ns under argon, air and oxygen atmospheres, respectively), energy-transfer quenching of $[Ru(bpy)_3]^{2+}$ by oxygen occurred by a dynamic process.

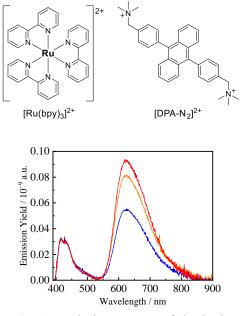


Fig. 1: Emission spectra of the ionic nanosphere containing 50-nmol/mg $[Ru(bpy)_3]^{2+}$ and 10-nmol/mg $[DPA-N_2]^{2+}$ ($\lambda_{ex} = 375$ nm) under argon (red), air (orange) and oxygen atmospheres (blue).

1) H. Yamamoto, M. Taomoto, A. Ito, D. Kosumi, J. Photochem. Photobiol. A: Chem. 2020, 401, 112771.