
Substrate oxidation by an iron(IV)-oxo complex bearing a porphyrin derivative as the ancillary ligand having a substrate-trapping site

(¹Grad. School of Pure and Applied Sciences, Univ. of Tsukuba) OLianyu Wei,¹ Tomoya Ishizuka,¹ Shogo Tanaka,¹ Takahiko Kojima¹ Keywords: iron complex, porphyrin, atropisomer, substrate oxidation, kinetic studies

As seen in the picket-fence porphyrins,¹ building steric structures around porphyrin peripheries is a common method to investigate the second-coordination-sphere effects on the reactivity of metalloporphyrins. In our group, selective convergence to each atropisomer from an isomeric mixture of a TPP derivative (1), having *meso*-aryl groups substituted with mesityl groups at one of the *o*-positions, has been successfully achieved by simple procedures such as heating.² The $\alpha\alpha\alpha\alpha$ isomer of 1 was obtained in 60% isolated yield by heating in CHCl₃ at 60 °C.² Herein, we have used an iron complex of the $\alpha\alpha\alpha\alpha$ isomer of 1 ($\alpha\alpha\alpha\alpha$ -1) to reveal effects of the hydrophoic cavity formed by the *o*-substituents of the *meso*-aryl groups on the substrate oxidation.

An Fe^{III} ion was inserted into the center of $\alpha\alpha\alpha\alpha$ -1 to obtain an Fe^{III} $\alpha\alpha\alpha\alpha$ -Fe^{III}-1 complex, and its structure was revealed X-ray by diffraction analysis (Figure 1a). After removing the axial Cl ligand, $\alpha\alpha\alpha\alpha$ -Fe^{III}-1 was treated with mCPBA (= mchloroperoxybenzoic acid) to obtain aaaa- $Fe^{IV}(O)(1^{+})$, which is a

Figure 1. (a) Crystal structure of $\alpha\alpha\alpha\alpha$ -Fe^{III}-1 from the side view, (b) substrate oxidation by $\alpha\alpha\alpha\alpha$ -Fe^{IV}(O)(1⁺⁺).

derivative of so-called "compound I". $\alpha\alpha\alpha\alpha$ -Fe^{IV}(O)(1⁺⁺) was characterized by ESR and UV-Vis spectroscopies. The kinetic studies for the substrate oxidation by $\alpha\alpha\alpha\alpha$ -Fe^{IV}(O)(1⁺⁺) revealed that the substrate oxidation included a pre-equilibrium process, in which the substrate was captured around the iron-oxo site. Herein, we will report the details of the substrate oxidation by $\alpha\alpha\alpha\alpha$ -Fe^{IV}(O)(1⁺⁺).

- 1) X. Huang, J. T. Groves, *Chem. Rev.* **2018**, *118*, 2491–2553.
- 2) T. Ishizuka, et al. J. Org. Chem. 2020, 85, 12856–12869.