電解酸化による窒素ドープ多環芳香族炭化水素の合成と物性評価 (東工大物質理工¹) ○大野 雄史¹・古性 大亮¹・一二三 遼祐¹・冨田 育義¹・稲木信介¹ Synthesis of N^+ -doped Polycyclic Aromatic Hydrocarbons by Electrolytic Oxidation and Their Optoelectronic Properties (1 School of Materials and Chemical Technology, Tokyo Institute of Technology) \bigcirc Yushi Ohno 1 , Daisuke Furusho 1 , Ryoyu Hifumi 1 , Ikuyoshi Tomita 1 , Shinsuke Inagi 1 Cationic nitrogen-doping in the framework of polyaromatic hydrocarbons (PAHs) is an effective method to modulate optoelectronic properties. However, the approaches to synthesize N^+ -doped PAHs are still limited. In this work, we demonstrate the facile synthesis of N^+ -doped triphenylene derivatives using intramolecular pyridination reaction by electrolytic oxidation. The phenylpyridine derivatives successfully afforded the corresponding N^+ -doped triphenylenes in 66–11% yield. In addition, we also elucidated the reaction mechanism by DFT calculation. Moreover, we found that the obtained N^+ -doped triphenylenes have high electron accepting nature and good emission properties derived from the incorporation of the pyridinium moiety. Keywords :Polycyclic aromatic hydrocarbons; Triphenylene; Cyclization; Electrolytic oxidation 多環芳香族炭化水素(PAHs)への窒素カチオンドーピングにより得られる N^+ -doped PAHs は、PAHs と比較して特異な電子物性を発現する。しかしながら、 N^+ -doped PAHs の合成法に関する知見は限られており N^+ 、簡便な合成法の開発が望まれている。本研究では、 N^+ -doped PAHs の簡便な合成法の確立を目的とし、分子内電解ピリジン化反応を利用した N^+ -doped トリフェニレン類の合成を検討した。その結果、種々の N^+ -doped トリフェニレン類を収率 66–11%で得ることに成功し、DFT 計算を用いて反応メカニズムを明らかにした。また、得られた N^+ -doped トリフェニレンは、無置換トリフェニレンと比較して、高い電子受容性及び発光特性を有することを見出した。 ^a Not detected, ^b Et₄NBF₄ was used as a supporting electrolyte. 1) Y. Asanuma, H. Eguchi, H. Nishiyama, I. Tomita, S. Inagi, Org. Lett. 2017, 19, 1824.