[2.2]パラシクロファン部を有する有機ホウ素錯体結晶の ピエゾフルオロクロミズムと結晶構造の相関

(阪公大院工¹・阪公大 RIMED²・兵県大院理³・リガク⁴) ○入井 駿¹・大垣拓也^{1,2}・ 小澤芳樹³•阿部正明³•佐藤寛泰⁴•松井康哲^{1,2}•池田浩^{1,2} Correlation between Piezofluorochromism and Crystal Structures of Crystals of Organoboron Complexes with the [2.2]Paracyclophane Moiety (¹Grad. Sch. Eng., Osaka Metro. Univ., ²*RIMED*, Osaka Metro. Univ., ³Grad. Sch. Sci., Univ. of Hyogo, ⁴Rigaku) OShun Irii,¹ Takuya Ogaki,^{1,2} Yoshiki Ozawa,³ Masaaki Abe,³ Hiroyasu Sato,⁴ Yasunori Matsui,^{1,2} Hiroshi Ikeda^{1,2}

Piezofluorochromism (PFC) is a phenomenon that fluorescent (FL) color changes reversibly in response to isotropic pressure. We found out that crystals of organoboron complexes with the [2.2]paracyclophane moiety (pCP-H and pCP-iPr, Fig. 1) exhibit PFC with different degrees of pressure dependence of FL under high pressure applied by diamond anvil cell (Fig. 2a). X-ray crystallographic analyses under atmospheric and high pressure revealed that the PFC of pCP-H mainly originates from intermolecular π - π interaction taking place in a π -stacking dimer with a large overlap of π -plane in crystal. On the other hand, pCP-iPr does not form such a π -stacking dimer in crystal, thus the PFC is controlled by *intra*molecular π - π interaction in the [2.2] paracyclophane moiety. In the presentation, we will also give the detail of the pressuredependence of the crystal structures and the energy levels of excited states evaluated by DFT calculations.

Keywords : Organoboron Complex; [2.2]Paracyclophane; Piezofluorochromism; Diamond Anvil Cell; Organic Crystal

ピエゾフルオロクロミズム (PFC) は圧力に応答して蛍光色が可逆的に変化する現 象である. 我々は[2.2]パラシクロファン部を有する有機ホウ素錯体 pCP-Hおよび pCPiPr (Fig.1)¹の結晶が、ダイヤモンドアンビルセルによる等方的圧力下で蛍光の圧力 依存性の異なる PFC を発現することを見出した(Fig. 2a). 大気圧下および高圧下に おける X 線結晶構造解析 (Fig. 2b) により, pCP-H の PFC は結晶中でのπ平面の重な りの大きなπ積層二量体にはたらく分子間π-π相互作用が主要因であることが明らか となった.一方で、pCP-iPr は結晶中でそのようなπ積層二量体は形成しないため、そ の PFC は[2.2]パラシクロファン部の分子内π-π相互作用により支配される. 発表では, 結晶構造の圧力依存性や励起状態のエネルギー準位を DFT 計算より評価した結果に ついても議論する.

of pCP-H and -iPr.

Fig. 1. Molecular structures Fig. 2. (a) Plots of E_{FL} of pCP-H and -*i*Pr crystals vs P in the compression and decompression processes (fitted lines: compression processes). (b) Changes of *intra*- and intermolecular π stacking distances upon compression from 0.1 MPa to ca. 3 GPa of pCP-H and -iPr crystals.

(1) Irii, S.; Ogaki, T.; Abe, M.; Sato, H.; Matsui, Y.; Ikeda, H. et al. Tetrahedron Lett. 2022, 101, 153913.