Synthesis of Spiro Ethers by Double S_N2 Reaction of α -Chloroketones

(Toyohashi University of Technology) OTrinité Parfaite Aballo, Akira Sugiyama, Kazutaka Shibatomi

Keywords: Spiro Compounds; Asymmetric Synthesis; Quaternary Ammonium Hydroxide; Organocatalyst; S_N2 Reaction

Spirocycles are important scaffolds in drug discovery, mainly due to their conformational rigidity and unique three-dimensional structures.¹ Indeed the spiro ether core which is found in a wide range of biologically actives molecules is an attractive subclass of spirocycles with a diverse array of medicinal applications.

We recently reported that decarboxylative chlorination of β -keto acids afforded α chloroketones with high enantioselectivity in presence of chiral primary amine catalyst.² We also found that subsequent S_N2 reaction of the resulting α -chloroketones with quaternary ammonium hydroxide yielded tertiary α -hydroxyketones without loss of enantiopurity.³ Based on our previous results, we envisaged that intramolecular S_N2 reaction of α -hydroxyketones would afford spiro ethers when a suitable leaving group is introduced at the terminal of side chain in the substrate.

Firstly, we prepared racemic α -chloroketones **1** with a chlorine atom at the terminal of side chain. Then, α -chloroketones **1** was treated with quaternary ammonium hydroxide to give the desired spiro ethers in up to 99% yield. The reaction is considered to proceed by intermolecular S_N2 reaction to yield α -hydroxyketones and subsequent intramolecular S_N2 reaction. The method provides various spiro ethers with 5/5-, 5/6-, 6/5, and 6/6-spiro ring systems. Next, we prepared an enantiomerically enriched α -chloroketone **1a** by decarboxylative chlorination of corresponding β -keto acid with 97% ee.² Treatment of **1a** with quaternary ammonium hydroxide successfully yielded the corresponding spiro ether **2a** without loss of enantiopurity.

K. Hiesinger, D. Dar'in, E. Proschak, M. Krasavin, *J. Med. Chem.* 2021, 64, 150–183. 2) K. Shibatomi,
K. Kitahara, N. Sasaki, Y. Kawasaki, I. Fujisawa, S. Iwasa, *Nat. Commun.* 2017, *8*, 15600. 3) M. K.
Kam, A. Sugiyama, R. Kawanishi, K. Shibatomi, *Molecules* 2020, 25, 3902.