自己集合球状錯体に包接したアミロイド β 疎水性断片二量体の NMR 構造解析

(東大院工 1 ・分子研 2 ・京大 1 ・京大 1 ・での上では、「・ケーの発生 1 ・中間 貴寛 1 ・矢木真穂 2 ・藤田大士 3 ・加藤晃一 2 ・藤田誠 1,2

NMR analysis of dimeric structures of amyloid β hydrophobic fragments encapsulated in a self-assembled spherical complex (¹*Grad. School of Engineering, The Univ. of Tokyo*, ²*Institute for Molecular Science*, ³*iCeMS, Kyoto Univ.*) ○ Yuta Onodera, ¹ Erina Takeuchi ¹, Takahiro Nakama, ¹ Maho Yagi, ² Daishi Fujita, ³ Koichi Kato, ² Makoto Fujita ^{1,2}

Since initial aggregates of amyloid- β (A β) proteins are presumed to be highly neurotoxic in Alzheimer's disease, their structural analysis has been demanded. However, their structures remain to be solved because, in the A β fibrillation process, they are transient intermediates difficult to isolate. Previously, we have encapsulated two A β hydrophobic fragments in an $M_{12}L_{24}$ hollow spherical complex formed through the self-assembly of Pd²⁺ ions and bis(pyridine) ligands, and their selective dimerization was observed¹). In this study, we report NMR structural analysis of the A β fragments encapsulated in the spherical complex with the aim of its dimeric structure determination (**Fig. 1**). By suppressing A β random aggregation through isolation in an $M_{12}L_{24}$ complex, the dimeric structures of A β fragments can be observed by NMR spectroscopy. Two ¹³C, ¹⁵N-labeled A β ₁₆₋₂₃ fragments (KLVFFAED) were encapsulated, and the dimeric structures in aqueous solvents were analyzed by multi-dimensional NMR. *Keywords : Amyloid \beta; Protein encapsulation; self-assembly; Alzheimer's disease; NMR analysis*

アミロイド β (A β)タンパク質の初期会合体は、アルツハイマー型認知症において高い神経毒性を有すると考えられており、その構造を解析することが求められている。しかし、これらは凝集過程における過渡的な中間体であるため、単離が難しく、その構造は未解明である。以前、我々は Pd^{2+} イオンとビスピリジン配位子の自己集合で形成される $M_{12}L_{24}$ 中空球状錯体に A β 疎水性断片 2 分子を包接し、その選択的な会合が示唆される結果を得た $^{1)}$ 。本研究では、この二量体の構造決定を目指して、球状錯体に包接された A β 疎水性断片の NMR 構造解析を行った (Fig. 1)。A β 断片 2 分子の包接により無秩序な凝集を抑制することで、二量体構造のみを単離し NMR 構造解析を行うことができた。 13 C, 15 N 同位体標識した疎水性断片 A β 16-23 (KLVFFAED)を球状錯体へ包接し、水性条件で会合した二量体構造を二次元、三次元 NMR により解析した。

Fig. 1 NMR analysis of dimeric structures of $A\beta_{16-23}$ (KLVFFAED) peptides by inhibition of $A\beta$ aggregation via encapsulation in a self-assembled $M_{12}L_{24}$ hollow spherical complex

1) 竹内絵里奈,中間貴寬,矢木真穂,藤田大士,加藤晃一,藤田誠,日本化学会 第102春季年会,**2022**,G301-3vn-14