自由エネルギーに基づく様々な阻害剤のウレアーゼ結合親和性の 比較

(広市大情¹・広市大院情²) ○末永 隼也¹・齋藤 徹²・鷹野 優²

Comparison of Binding Affinity between Representative Urease Inhibitors Based on the Free Energy (¹ Faculty of Information Sciences, Hiroshima City University, ²Graduate School of Information Sciences, Hiroshima City University) ○ Shunya Suenaga,¹ Toru Saito,² Yu Takano²

Urease is a nickel-dependent metalloenzyme, which catalyzes hydrolysis of urea (1). The resulting ammonia is responsible for a rapid increase of pH, thereby causing diseases and air pollution. Very recently, we revealed the reaction mechanism catalyzed by Urease using the QM/MM metadynamics simulations. Here, we evaluated and compared the binding affinities of several inhibitors based on the computed binding free energies. The examined inhibitors include hydroxyurea, acetohydroxamic, and N-(n-butyl)phosphoric triamide. Table 1 shows that hydroxyurea and acetohydroxamic acid bind to the dinickel center in a similar way to urea on the basis of the computed activation and reaction free energies. By contrast, the binding process of N-(n-butyl)phosphoric triamide turns out to be a barrier-free process and to yield the largest reaction free energy.

Keywords: QM/MM MD, Metalloenzyme, Inhibitors, Hydrolysis

ウレアーゼは尿素の加水分解を触媒する金属酵素である。生成した NH_3 は、人間の健康と農業の両方に悪影響を与える急速な pH 上昇を引き起こす 1)。近年、当グループの研究により尿素の加水分解の反応機構が明らかになった 2)。本研究では、QM/MM MD 計算により阻害剤候補分子のウレアーゼへの結合親和性を定量的に明らかにすることを目的とする。

QM/MM MD 計算により得られたウレアーゼと各基質の反応における活性化及び反応自由エネルギーの結果を表 1 に示す。尿素(1)、ヒドロキシ尿素(2 つの結合様式が考えられるため、それぞれを (2, 2) とする(2, 2) とする(2, 2) とする(3, N) ルー(2, 2) と戦すると、(3, N) は活性化障壁なしでウレアーゼ活性部位に強く結合しうる。また、(3, 2) と異なり (3, N) を生成しないため、優れた阻害剤であることが言える。

表1 各基質における活性化及び反応自由エネルギー[kcal/mol]

基質	活性化自由エネルギー	反応自由エネルギー
1	4.0	-22.5
2	3.9	-20.3
2'	5.1	-26.4
3	4.6	-27.1
4	0.0	-34.8

- 1) Blakeley. R. L. et al. *Biochemistry*, **8**, 1991-2000 (1969).
- 2) Saito. T. and Takano. Y. J. Phys. Chem. B, 126, 2087-2097 (2022).