高歪み化合物の光誘起および非光誘起電子移動反応:ジフェニルアミノ基の置換数に依存する多様な反応性

(阪公大院工 1 ・阪公大 RIMED 2 ・阪大院理 3) ○高安凌平 1 ・大垣拓也 1,2 ・松井康哲 1,2 ・久保孝史 3 ・池田 浩 1,2

Photoinduced and Non-photoinduced Electron-transfer Reactions of Highly Strained Compounds: Various Reactivity Depending on the Number of Substitutions of the Diphenylamino Group (¹Grad. Sch. Eng., Osaka Metro. Univ., ²RIMED, Osaka Metro. Univ., ³Grad. Sch. Sci, Osaka Univ.) O Ryohei Takayasu, Takuya Ogaki, ^{1,2} Yasunori Matsui, ^{1,2} Takashi Kubo, Hiroshi Ikeda^{1,2}

Radical cations $\mathbf{1}^{+}$ (Figure 1) generated in electron-transfer reactions using light or aminium salts [(4-BrC₆H₄)₃N⁺SbCl₆] of the highly strained cage compound $\mathbf{1}$ show various reactivities depending on the number of substitutions of the diphenylamino (Ph₂N) group. For example, the parent molecule $\mathbf{1a}^{+}$ without Ph₂N group has a one-electron σ bond, but this chemical species is quickly deactivated by back electron-transfer reaction. In addition, $\mathbf{1c}^{+}$ possessing two Ph₂N groups, for which it is expected to isolate the salts with one-electron σ bonds, unexpectedly gives a $\mathbf{3}^{+}$ salt with a phenonium structure. In this study, we investigated the reactivity of $\mathbf{1b}^{+}$ with one Ph₂N group and found that it gives $\mathbf{2}^{+}$ with a benzidine moiety. In the presentation, we will discuss the reactivity of all $\mathbf{1}^{+}$, including $\mathbf{1b}$ -Br⁺ possessing Br atoms. Keywords: Electron-transfer Reaction; One-electron σ -Bond; Radical Cation; Laser Flash Photolysis; Single Electron Transfer

光やアミニウム塩 [(4-BrC₆H₄)₃N⁺SbCl₆]を用いた高歪みカゴ型化合物 1 (Figure 1) の電子移動反応で生ずるラジカルカチオン $\mathbf{1}^+$ は、ジフェニルアミノ (Ph₂N) 基の置換数に応じて多様な反応性を示す。例えば Ph₂N 基のない母体 $\mathbf{1a}^+$ は、一電子 σ 結合を有するが逆電子移動反応で速やかに失活する $\mathbf{1}^-$ 。また、一電子 σ 結合を有する塩の単離を期待して Ph₂N 基を $\mathbf{2}$ つ導入した $\mathbf{1c}^+$ は、予期せぬことにフェノニウム構造を有する $\mathbf{3}^+$ の塩を与える $\mathbf{2}^-$ 。本研究では、Ph₂N 基が $\mathbf{1}$ つの $\mathbf{1b}^+$ の反応性を検討したところ、ベンジジン骨格を有する $\mathbf{2}^+$ を与えることを見いだした。発表では、Br を有する $\mathbf{1b}$ -Br $\mathbf{3}^+$ も含め、全ての $\mathbf{1}^+$ の反応性について議論する.

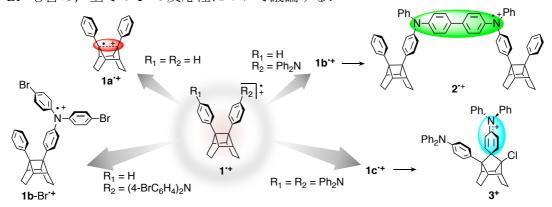


Figure 1. Various electron-transfer reaction modes of 1.

- 1) Ikeda, H. unpublished data.
- 2) Kuramoto, Y.; Matsui, Y.; Ohta, E.; Sato, H.; Ikeda, H. Tetrahedron Lett. 2014, 55, 4366–4369.