2-フェニルフェノールの酸化重合における酵素モデル触媒の置換 基効果と反応機構

(岡山理大院理¹・信州大院総理工²・茨城大理³) ○中野 晟志¹・浅尾 直樹²・藤澤清史³・東村 秀之¹

Substituent Effect and Reaction Mechanism of Enzyme Model Catalysts in Oxidative Polymerization of 2-Phenylphenol (¹Graduate School of Science, Okayama University of Science, ²Graduate School of Science and Technology, Shinshu University, ³College of Science, Ibaraki University) ○ Akiyuki Nakano,¹ Naoki Asao,² Kiyoshi Fujisawa,³ Hideyuki Higashimura¹

We synthesized a new poly(arylene oxide) with ultra-low dielectric constant from regionselective oxidative polymerization of 2-PhP with an enzyme model (Cu($R^1R^2R^3$ tacn): $R^{1-3} = {}^{i}Pr$) catalyst (see below). Recently, we have found that the introduction of one or two bulky Bu group(s) in R^{1-3} can improve catalytic activity and molecular weight of the polymer.

In the Cu(${}^{1}\text{Pr}_{3}\text{tacn}$) catalysis, a large amount of low molecular weight components with more branched structures was produced, and the reaction rate in the latter stage of polymerization was significantly reduced. However, Cu(${}^{1}\text{Bu}^{1}\text{Pr}_{2}\text{tacn}$) and Cu(${}^{1}\text{Bu}_{2}^{n}\text{Butacn}$) catalysts reduced such low molecular weight components, greatly improved the reaction rates, and meaningfully increased the M_{n} to more than 10,000. On the other hand, Cu(${}^{1}\text{Bu}_{3}\text{tacn}$) catalyst produced C=O structures via free radicals, resulting in an increase in the low molecular weight component. These data showed that moderate bulkiness of R¹⁻³ would be required to maximize the activity and selectivity. Furthermore, the Cu(${}^{1}\text{R}^{2}\text{R}^{3}\text{tacn}$) catalysts have characteristics to form basic oxygen complexes. Since the μ - η^{2} : η^{2} -peroxide complex did not react with phenol, 3) the Cu($^{1}\text{Bu}_{3}\text{tacn}$) catalyst is speculated to generate the μ -1,2-peroxide complex.

Keywords: Enzyme Model Catalyst; Triazacyclononane; Oxidative Polymerization; 2-Phenylphenol

酵素モデル触媒($Cu(R^1R^2R^3tacn)$)を用いた 2-PhP の位置選択的酸化重合により、超低誘電率を示す P-2-PhP を合成し $^{1)}$ 、 R^{1-3} に嵩高い 10 Bu 基を $1\sim2$ 個導入することで、触媒活性を向上させ、ポリマーを高分子量化できることを見出している(下式) 20 。

 $Cu(iPr_3tacn)$ 触媒では、分岐構造の多い低分子量成分を生じ、重合後半の反応速度が著しく低下した。一方、 $Cu(iBu^2r_2tacn)$ 及び $Cu(iBu^2r_3tacn)$ 触媒では、低分子成分を減少させ、反応速度が大幅に向上し、 M_n が 1 万以上に達した。なお $Cu(iBu^2tacn)$ 触媒では、フリーラジカルを経由して C=O 構造を生じ、低分子量成分が増加した。活性と選択性を最大にするには R^{1-3} に適度な嵩高さが必要である。また、本触媒は塩基性酸素錯体を経由することが特徴である。 $Cu(iBu^2tacn)$ 触媒では μ - η^2 : η^2 -peroxide 錯体がフェノールと反応しないことから 3、 μ -1,2-peroxide 錯体を経由していると推定される。

HO

$$\begin{array}{c}
Cu(R^1R^2R^3\text{tacn}) \\
O_2
\end{array}$$

- 1) A. Nakano, Y. Tanabe, H. Higashimura, Polymer 2021, 237, 124345.
- 2)中野晟志, 浅尾直樹, 藤澤清史, 東村秀之, 日本化学会第 102 春季年会, P3-3am-02 (2022).
- 3) G. J. Karahalis et al., Inorg. Chem. 2016, 55, 1102.