気体分離膜と融合した光触媒による H₂O 分解反応

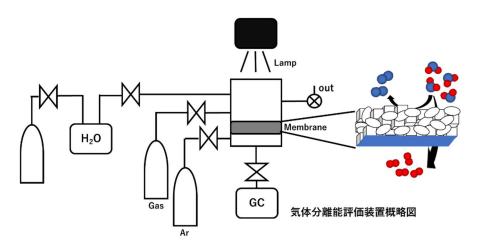
(富山大学) ○大津岳士・萩原英久

H₂O Splitting Reaction on Photocatalyst Combined with Gas Separation Membrane (*University of TOYAMA*) ○Takeshi Ohtsu , Hidehisa Hagiwara

Further utilization of hydrogen is being promoted for decarbonization. One method of hydrogen production is H_2O decomposition using inorganic semiconductor photocatalysts. While this method enables the construction of a CO_2 -free production system using sunlight, it generates a mixture of H_2 and O_2 gases, which poses a safety issue.

We are aiming to construct a water vapor decomposition system utilizing hydrogen separation membranes¹⁾. We made ceramic discs of SrTiO₃ and α -Al₂O₃ mixture, furthermore hydrogen separation, silica membrane on the ceramic discs. H₂O decomposition was performed by allowing water vapor to permeate through these discs.

The water vapor reaction enables H₂ separation immediately after the H₂O decomposition reaction, which leads to the effective use of sunlight and industrial waste heat. In addition, the separation of hydrogen is expected to improve not only safety but also activity due to the equilibrium shift.


We have been evaluating the activity of H₂O decomposition by hydrogen separation using a light-irradiable gas separation system, and we report on these studies.

Keywords: Photocatalyst; water splitting; gas separation membrane; hydrogen

脱炭素化に向け、水素のさらなる活用が進められている。水素製造法として無機半導体光触媒による H_2O 分解が挙げられる。この方法では太陽光を用いた CO_2 フリーな製造システムの構築が可能な反面、 $H_2 \cdot O_2$ 混合気体が発生し安全性に課題を抱える。

我々は既存の水素分離膜りを活用した水蒸気分解システムの構築を目指している。無機半導体光触媒 $SrTiO_3$ と α - Al_2O_3 を混合したセラミックディスクへ H_2 分離用シリカ膜を作成し、水蒸気を透過させて H_2O 分解を行う。水蒸気反応とすることで、 H_2O 分解反応後即時に H_2 分離が可能となり、光触媒が利用できない波長域の太陽光や産業排熱の有効利用へも繋げられる。また水素分離により安全性の向上だけでなく平衡シフトによる活性向上が期待できる。

これまでに光照射可能な気体分離能評価装置を用いた水素分離による H_2O 分解活性の評価を実施してきたため、これらの検討内容について報告する。

¹⁾ Ockwig, N. W., Nenoff, T. M., , *Chem. Rev.* , 2007,107,4078-4110