Pd-Ru 複合助触媒を担持した NaTaO₃:Sr 光触媒を用いた 水を電子源とする CO₂ 還元における CH₄ 生成の高活性化 (東理大理 1 ・東理大総研カーボンバリュー²) 〇八木橋 克 1 ・山口 友一 1,2 ・工藤 昭彦 1,2 Efficient Photocatalytic CO₂ Reduction to CH₄ Using Water as an Electron Donor over a Pd-Ru Cocatalyst-loaded NaTaO₃:Sr Photocatalyst (¹Faculty of Science, Tokyo University of Science, ²Carbon Value Research Center, Research Institute for Science and Technology, Tokyo University of Science) OSuguru Yagihashi, ¹ Yuichi Yamaguchi, ^{1,2} Akihiko Kudo^{1,2} Recently, we have found that a Pd-Ru cocatalyst-loaded Sr-doped NaTaO₃ (NaTaO₃:Sr) photocatalyst evolves CH₄ as an 8-electron reductant using water as an electron donor by photocatalytic CO₂ reduction.¹⁾ Here, it is required to investigate the reaction condition to improve CH₄ formation activity and clarify the mechanism of CH₄ formation. In the present study, we investigated the effect of CO₂ partial pressure on the photocatalytic CO₂ reduction over a Pd-Ru/NaTaO₃:Sr photocatalyst. We performed the photocatalytic CO₂ reduction over a Pd-Ru/NaTaO₃:Sr photocatalyst under the various CO₂ partial pressures (3, 17, 33, 67, 100%, total 1 atm, Ar balance). The photocatalytic activity of CO₂ reduction for CH₄ gradually decreased during light irradiation under 33-100% CO₂ partial pressure. On the other hand, the stabler CH₄ formation and high CH₄ formation activity were observed under 17% CO₂ pressure. The selectivity for CH₄ formation was more than 10% under 17-100% CO₂ pressure. Although the e⁻/h⁺ ratio was more than 1 during light irradiation, it became almost unity after turning off the light, evolving a large amount of O₂. In conclusion, efficient photocatalytic CO₂ reduction to CH₄ under low partial CO₂ pressure over Pd-Ru/NaTaO₃:Sr has been achieved. Keywords: CO₂ reduction; CH₄ formation; Pd-Ru dual cocatalyst; Metal oxide; Photocatalyst 近年、当研究室では、Pd-Ru 助触媒を担持した Sr ドープ $NaTaO_3(Pd$ -Ru/ $NaTaO_3:Sr$) 光触媒が水を電子源とした CO_2 還元によって 8 電子還元体である CH_4 を生成することを見いだした $^{1)}$. ここで本反応の詳細な反応条件を調べることは、高活性化および CH_4 生成メカニズム解明のために重要である。そこで本研究では、種々の CO_2 分圧下における Pd-Ru/ $NaTaO_3:Sr$ 光触媒を用いた CO_2 還元を行った。 種々の CO_2 分圧下(3, 17, 33, 67, 100%, 全圧 1 atm, Ar バランス)における Pd-Ru/Na TaO_3 :Sr 光触媒を用いた CO_2 還元を行ったところ,33-100%の CO_2 分圧下で光触媒反応時間と共に CH_4 生成に失活がみられたが,17%の CO_2 分圧下のときに比較的高活性かつ安定的に CH_4 が生成した.また,17-100%の CO_2 分圧下において,10%以上の CH_4 生成選択率が得られた.いずれの CO_2 分圧下においても光照射時には電子-正孔比が 1 を上回ったが,光消灯後に酸素の生成が見られ,最終的な電子-正孔比は 1 に近づいた.以上より, CO_2 分圧を低くすることで,Pd-Ru/Na TaO_3 :Sr 光触媒を用いた水を電子源とした CO_2 還元における高活性かつ安定な CH_4 生成を達成した.1) 八木橋,吉野,山口,工藤,日本化学会第 102 春季年会,B304-4pm-07 (2022).