ジビフェニル置換架橋型(R)-ビナフチル誘導体の合成と物性

(崇城大院工¹・崇城大薬²・大分大理工³) ○川井田 徹¹・水城 圭司¹

・杉浦 正晴²・原田 拓典³・八田 泰三¹

Synthesis and Properties of Dibiphenyl-substituted Bridged (R)-Binaphthyl Derivatives (¹Graduate School of Engineering and ²Faculty of Pharmaceutical Science, Sojo University, ³Faculty of Science and Technology, Oita University) ○ Toru Kawaida,¹ Keiji Mizuki,¹ Masaharu Sugiura,² Takunori Harada,³ Taizo Hatta¹

Circularly polarized luminescent (CPL) materials have recently attracted attention because they can be used as light-emitting materials for circularly polarized organic lightemitting diodes (CP-OLEDs) that can be applied to quantum computing, bioresponsive imaging, asymmetric synthesis, and three-dimensional displays. On the other hand, it is known that the introduction of dye units into noncentrochirality unit results in remarkable chiroptical properties.

Ar N
$$(CH_2)_n$$
 (R) -3: $X = H$ (R) -4: $X = NPh_2$ (R) -1: $n = 1$, (R) -2: $n = 4$

Therefore, in this study, we have developed blue fluorescent bridged (R)-binaphthyl

derivatives (R)-1 and (R)-2 having tetraarylimidazole units that function as blue light-emitting moieties¹, and dibiphenyl-substituted bridged (R)-binaphthyl derivatives (R)-3, (R)-4 and (R)-5, and have compared the chiroptical properties of (R)-1 \sim (R)-5.

(R)-3, (R)-4, and (R)-5 all exhibited blue fluorescence in the same as (R)-1 and (R)-2, and their CD properties, absorption dissymmetry factors ($|g_{abs}|$), were 1.7×10^{-3} , 1.7×10^{-3} , and 4.9 $\times 10^{-4}$, respectively. It was revealed that the $|g_{abs}|$ values of (R)-3 and (R)-4 were larger than (R)-1 (4.5 $\times 10^{-4}$) and (R)-2 (5.5 $\times 10^{-4}$). Their CPL properties, the luminescence dissymmetry factor ($|g_{lum}|$), are currently under investigation.

Keywords: Circularly polarized luminescence; Circular dichroism; Binaphthyl derivatives; Blue fluorescence; Chiroptical property

円偏光発光(CPL)材料は、量子コンピューティング、生体応答イメージング、不 斉合成、3次元ディスプレイへの応用が可能な円偏光有機発光ダイオード(CP-OLED) の発光材料となることから、最近注目を集めている。一方、非中心不斉に色素ユニットを導入すると、顕著なキロプティカル特性を発現することが知られている。

そこで本研究では、青色発光部位として機能するテトラアリールイミダゾールユニットを架橋型(R)-ビナフチル誘導体に導入した青色蛍光性(R)-1,(R)-2 と、ビフェニル基を直結したジビフェニル置換架橋型(R)-ビナフチル誘導体(R)-3,(R)-4,(R)-5 を開発すると共に、(R)-1 \sim (R)-5 のキロプティカル特性ついて比較検討した。

(*R*)-3, (*R*)-4, (*R*)-5 は(*R*)-1, (*R*)-2 と同様に、いずれも青色蛍光性を示し、CD 特性である異方性因子($|g_{abs}|$)は、それぞれ 1.7×10^{-3} , 1.7×10^{-3} , 4.9×10^{-4} となり、(*R*)-3, (*R*)-4 は(*R*)-1 (4.5×10^{-4})、(*R*)-2 (5.5×10^{-4}) よりも大きいことが明らかになった。なお、CPL 特性($|g_{lum}|$)については、現在検討中である。

1) Y. Shimada, S. Matsumoto, K. Mizuki, T. Hatta, The 100th CSJ Annual Meeting, 2020.