電子不足な含窒素 π 共役系を両翼にもつ V 字型分子の合成とカラ ムナー液晶材料への展開

(京大院理¹) 〇大野 滉太¹・須賀 健介¹・御代川 克輝¹・齊藤 尚平¹ Synthesis of V-shaped molecules bearing electron-deficient π -system and development of columnar liquid crystals (¹*Graduate School of Science, Kyoto University*) 〇Kota Ono,¹ Kensuke Suga,¹ Katsuki Miyokawa,¹ Shohei Saito¹

Recently, photofunctional soft materials with a real-time photoresponse has attracted attentions.^[1] Photoresponsive molecules can be applied to a variety of materials, including reworkable adhesives.^[2] Flapping V-shaped molecules (FLAP) are one of the photoresponsive molecules. FLAP has rigid π -wings and a flexible cyclooctatetraene (COT) ring, which shows conformational planarization in excited state.^[3] In addition, FLAP tends to columnarly assemble by a two-fold π -stacked structure.^[4] Here, we expect that the use of electron-deficient dipyridophenazine (dppz) skeletons for the rigid π -wings would lead to more robust columnar stacking structure. In this study, we introduced long alkyl chains at the dppz-FLAP skeleton for developing highly cohesive photoresponsive columnar liquid crystals. In this presentation, we will discuss aggregation structures and phase transition properties of dppz-FLAP.

Keywords : Columnar stacking; Nitrogen-doped π -system; Liquid crystal; two-fold π -stacking

近年、光照射の on-off によって即座に応答する分子を組み込んだ機能性ソフトマテ リアルが注目を集め^[1]、リワーク可能な接着材料など様々な応用が期待されている^[2]。

剛直な π 共役部位と柔軟な 8 員環からなる V 字型分子 FLAP は励起状態で平面化 し、基底状態では V 字型に戻るリアルタイム光応答分子である^[3]。それに加え、FLAP は両翼の π 共役部位による二重 π スタッキングに由来して強固なカラムナー集積構 造を示す傾向がある^[4]。本研究では、この FLAP 分子の両翼に電子不足なジピリドフ ェナジン(dppz)部位を用いることで、より強固な二重 π スタッキング構造を構築し、 凝集力の高い光応答性カラムナー液晶材料の開発を試みた。本発表では、複数の長鎖 アルキル基を導入した dppz-FLAP の合成、その集積構造と相転移特性を報告する。

Fig. 2. Columnar stacking of **FLAP** molecules

- 1) S. Honda, T. Toyota, *Nat. Commun.* **2017**, *8*, 502.
- 2) S. Saito, S. Nobusue, M. Hara et al., Nat. Commun. 2016, 7, 12094.
- 3) C. Yuan, S. Saito, et al., J. Am. Chem. Soc. 2013, 135, 8842-8845.
- 4) C. Yuan, S. Saito, et al., Chem. Eur. J. 2014, 20, 2193-2200.