問題解決から帰納する教訓の質を規定する要因の検討一模範解答と自らの思考過程の比較に着目して—

柴 里実（東京大学大学院•日本学術振興会特別研究員）

キーワード：数学的問題解決，教訓帰納，学習方略

問題と目的

問題解決後の効果的な振り返りを実現する学習方略として，教訓帰納という方略が提案されてい る（市川，1991，1993）。問題解決後に「この問題を解いてみて何が分かったのか」「なぜ自分は間違え たのか」ということを考え，言語化しておくこと で，問題解決に必要な知識の理解や転移を目指す ものである。教訓としては，問題に関することだ けではなく，解決に必要な方略についても引き出 しておくと良いとされている。

先行研究では，学力の高い学習者が自発的に利用していること（植阪他，2012），方略獲得によって他教科への転移や学習観の変容が見られること （植阪，2010）など，その効果が示されてきており，学習法講座開発も行われている（瀬尾他，2012）。

一方で，学習者の引き出す教訓が「やり方を忘 れた」「どうやって式を作るかよく考える」といつ た，後続の問題解決に役立たない表面的な内容も多く，教訓の質に関する問題点が指摘されている （寺尾，1998：柴，2016）。

本研究では，有効な教訓の産出を促す要因とし て，問題解決後から教訓産出までの学習者の認知 プロセスに着目する。具体的には，模範解答と自分の思考過程を比較するという活動が，有効な教訓産出に寄与していると考える。なお本発表での データは，有効な教訓産出を促す指導法開発を目的とした研究の一部である。

方 法

参加者 2017 年 8 月に国立 T 大学で行われた学習法講座「夏休み学習ゼミナール」の数学コースに参加した中学 2 年生 79 名。
材料 問題解決課題：文章題（方程式の利用）と図形問題（立体の切断）の 2 題。教訓産出課題：各問題について，不正解者には「なぜ間違えてしまっ たのか（分析）」「次同じ間違いをしないように気を つけるべきことはなにか（対策）」の 2 点について記述を求めた。解答の意味理解確認課題：正解式 の一部について，その式が何を示しているのかを尋ねた。既有知識テスト：数学的知識や手続きを問う11題。
手続き 被験者が数学の問題に取り組んだあと，実験者が解答を配布した。自分の答案を確認する ことと解答を十分に理解することを指示し，教訓産出課題を提示した。

コーディング 不正解者の教訓について，心理学専攻の学部生と大学院生の 2 人でコーディングを行った。「分析」「対策」に関する記述それぞれに ついて，「次の問題解決に役立つか」という観点で $0 \sim 2$ 点，有効な方略に関する教訓が含まれていれ ば 1 点加点として評定を行い $(\kappa>.80)$ ，「対策」得点に重み付けをして合算し「教訓得点」とした。 また不正解者の答案用紙について，自分がどこで間違えたかをチェックしているかどうかという
「自発的比較」の有無をコーディングした。

結果と考察

学習者の要因検討 教訓得点を従属変数，自発的比較の有無と解答の意味理解の正誤を独立変数と して重回帰分析を行った結果，文章題においては自発的比較の変数が，図形問題においては自発的比較と解答の意味理解の変数が有意であった
（Table 1）。後続の問題解決に有効な教訓を引き出 すためには，まず自分の思考過程と正解式を比較 し，自分のつまずきを正確に捉えるという活動が重要であることが示唆された。

Table1 認知的要因が教訓得点に与える影響の検討

	教訓得点					
	文章題			図形		
	B	SE B	$\boldsymbol{\beta}$	B	SEB	β
（定数）	1.21	1.07		－． 48	． 82	
事前教訓得点	． 09	． 17	． 07	21	． 17	． 17
既有知識	． 04	． 08	． 06	． 11	． 09	． 17
自発的比較	99	31	． $42^{\text {\＃\＃}}$	92	． 44	．28＊
解答の意味理解	－． 14	25	－． 07	． 87	36	．32＊
R^{2}			20			29
Adj R^{2}			．13＊			． $22^{\text {\＃\＃}}$

${ }^{*} p<.05$ ，${ }^{* *} p<.01$

課題の要因 文章題と図形問題の教訓得点を従属変数として，対応のある t 検定を行ったところ，図形問題の方が有意に得点が高いことが示された （文 $M=1.00$ ，図 $M=1.48, t(45)=2.63, p<.05$ ， $d=.4)$ 。本研究で扱った図形問題は解法のポイン トが明確であった一方で，文章題は答えに至るま でに複数の数学的知識を必要とする問題であった ことから，問題の複雑性が教訓の引き出しやすさ に影響を与えるという可能性が示唆された。

