Kansei Imaging: Holistic Image Enhancement

Carl Staelin, Boris Oicherman² (1. Google Inc., 2. University of Minnesota)

We describe and explore how Kansei Imaging should combine and integrate research and algorithms from a wide range of disciplines, such as image analysis, image processing, machine learning, printing, photography, painting and composition, color science, and beauty styling (makeup). We explore how the final application impacts nearly all aspects of the imaging solution: e.g. more user feedback and guidance permits stronger and "riskier" enhancements and alternatives. We also explore how integrating various analyses and segmentations into the solution in order to allow control over each enhancement on a per-pixel basis is vital. We finally raise topics for further research.
Kansei Imaging: Holistic image enhancement

Carl Staelin*, and Boris Oicherman**

*Google Inc.
**Weisman Art Museum, University of Minnesota

Kansei imaging, the development of algorithms to modify an existing image to reach a set of predefined emotional qualities, involves the complete range of image analysis and enhancement algorithms. Algorithms such as sharpening, denoising, and local contrast enhancement are part of a standard image enhancement repertoire, and these algorithms require matching analysis algorithms to evaluate the image and control the strength of the algorithms on a per-pixel basis. A complete Kansei imaging solution should include other analyses and algorithms, such as color and tone mapping, content and context detection, and image composition enhancement, all with matching analysis algorithms.

1. Introduction

Image enhancement algorithms, such as sharpening and denoising, have been around for decades, with new algorithms and applications, such as seam carving [3], regularly added to the field. Kansei Imaging [1] proposed that image enhancement algorithms might be tailored or controlled to yield a desired emotional effect, with the first steps focused on controlling color hue and saturation. The Automatic Image Enhancement Server [2,4] tackled other aspects such as sharpening and denoising. We propose that these and other algorithms should be knitted together to evaluate and enhance all the aspects of the image, including color, contrast, composition, and sharpness, to yield the desired effect.

2. Image Enhancement Algorithms

Many image enhancement algorithms have been developed to solve or address a wide range of image features. Standard and well-known classes of algorithms include sharpening and denoising [11], or contrast enhancement and local contrast enhancement [12]. There are other categories of image enhancements, such as memory color enhancement [13] and skin tone correction [2] that can positively affect the emotional impact of an image.

More recent enhancements include algorithms such as haze reduction [18], reflection removal [19], and object removal [29]. Many new algorithms and developments have been driven by consumer cellphone photography.

One element of the enhancement algorithms for Kansei imaging is defining the action in terms of emotion-related axes. [1] proposed a color emotion space for color activity, color weight, and color warmth. The enhancement algorithms may then process the images according to these aspects. Examples of less and more color active images:

![Less Color Active Image](image1.png)

![More Color Active Image](image2.png)

Similar axes and definitions can be made for contrast, brightness, and sharpness. Other enhancements, such as memory colors do not have as obvious a choice of axes.

3. Image Composition

A vital aspect of each photograph is the subject and the image composition. Related aspects include things such as the framing of the subject within the image, and the relative illumination, color, and sharpness of the subject compared to the background.

There are various algorithms to restructure the image composition via cropping [6,7] or other means such as seam carving [3] or object placement [23]. In particular [6,23] define aesthetic measures that combine various important compositional aspects such as the rule-of-thirds, visual weight balance, and diagonal saliency, but ignore some important aspects, such as gaze direction or scan path.

Some aspects of image composition can convey emotional impact. A well-composed and balanced image is generally more relaxing and often preferred to an imbalanced image which can subtly provide tension or a feeling of disorder [17]. An example of poor composition where the subject’s gaze direction is towards the near edge instead of across the image, giving a claustrophobic feeling as shown below. There are hundreds of books and articles that discuss the rules of composition in detail.
resources on photo composition such as [37,38,39,40], a good summary of photo composition advice is in [36].

Another common problem, particularly in consumer photographs, is the intersection of spurious and distracting background elements with a subject, such as a tree apparently sprouting out of a subject’s head, as shown above, or distractions, commonly known as “photo bombing”. Automatically identifying and potentially removing such distractions can dramatically improve the image aesthetics and appeal, such as this manually edited example from [41] shown below.

Finally, one should note that an important aspect of art is the element of “surprise”. So, Kansei imaging should retain the ability to “surprise” the user. Few things are as boring as a “cookie cutter” composition with no uniqueness or “spark”. These observations suggest the potential for composition-related Kansei emotive axes such as “relaxing” vs. “surprising”.

4. Image Analysis Algorithms

Proper control and utilization of the various enhancement algorithms above relies on extensive image analyses. For example, sharpening and denoising algorithms require accurate noise and blur estimation on per-pixel basis to better separate signal from noise [14, 15]. Similarly, face and facial feature detection [16, 31] and skin detection [2] can be used to selectively sharpen eyes and mouth while largely leaving skin untouched. Blur estimation can be used to sharpen or refocus an image [30].

Obviously, significant low-level and semantic-level analyses related to image composition are also required. Subject or foreground segmentation may be done via saliency and matting [5,43], and myriad algorithms exist for object segmentation [42]. Other aspects of composition, such as horizon, leading lines, gaze direction, and so forth will also need to be analyzed and evaluated.

A partial list of various analyses and how they might used includes:

- Noise estimation: denoising and sharpening.
- Blur estimation: sharpening, depth estimation.
- Face and facial feature detection: sharpen eyes, enhance skin color, whiten and sharpen teeth, “make-up” color correction and contrast management. Foreground/subject detection and segmentation, and gaze detection.
- Gaze direction and scan path: image composition and foreground/background segmentation.
- Sky, foliage, skin segmentation: memory color correction, denoising and sharpening.
- Saliency: image composition and foreground background segmentation.
- Activity: sharpening and denoising.
- Foreground/background segmentation: color correction or enhancement, contrast enhancement or reduction, etc.
- Depth (distance from camera): haze reduction, color correction.
- Color weight, warmth, activity: color correction.

5. Artistic Intent

One key aspect is to infer any existing or latent artistic intent that may be in the input image. Recent work [21] creates a framework for recognizing various common artistic intents, such as “serene” or “romantic”. Similarly [22] describes a framework to evaluate the emotional effect of an image, such as “amusement”, “anger”, or “contentment”. If there is a clear subject or intent, then any enhancements should likely complement the existing subject or intent. For example, the subject might be subtly sharpened and the background blurred, or color scheme for the subject might be made more active and the background less active. Similarly, if there is a clear intent with respect to the existing colors, the enhancements might strengthen that intent rather than blithely optimizing for a generic intent.

6. Application

The context of the actual imaging application will have a significant impact on the set of available enhancements. For example, an application similar to the Automatic Image Enhancement Server [4] cannot modify the image composition and cannot afford to degrade images because there is no interactive user...
feedback or guidance and any imaging “failures” would result in the return of the whole photobook, so its set of enhancements is necessarily relatively limited and the enhancements must be applied conservatively.

Conversely, an application like Instagram has an explicit interactive image enhancement step in the image publication action. In this case the full set of enhancements would be available and the “best” or a set of alternative enhancements could be iteratively presented to the user, and the application may ask the user for explicit guidance as to the artistic and emotional intent for the image, such as “happy/active” or “broody/dark”. In this way more extreme enhancement alternatives may be explored or selected.

One key element of any Kansei imaging application, particularly an interactive or user-configurable application, is providing the user with sensible, understandable controls that yield meaningful differences in the final output image. Recent work [28] uses a Bayesian aggregated user feedback-based method that converts multiple enhancement meta-parameters into a single user control slider. It may be possible to use similar approaches to help define a small set of user-understandable axes and controls that can guide and control the Kansei imaging’s enhancements.

Other work [32, 33, 34] shows how machine learning can learn to predict or measure aspects of image aesthetics and quality assessment, which in turn might be used in a variety of ways, such as automatically choosing between enhancement alternatives. [35] shows how to extend these approaches to develop a personalized image quality measure based on relatively little user feedback.

7. Display and Print

The image enhancements should be done in a manner that is sensitive to the available output gamut and contrast. For displays, the input and output gamut and contrast will be similar, but printed images generally have much less contrast and a smaller and different color gamut than digital displays.

Since the gamut and contrast of print is generally much smaller than that of displays, using gamut mapping, hue rotation, tone mapping and other contrast and local contrast enhancement techniques is vital [26, 27]. In addition, the image processing and enhancements should be done in a fashion that is aware of the available output gamut so the enhancements may make use the available gamut, rather than post-processing an enhancement image to target it for print.

Additionally, print half-toning generally blurs images and the final print resolution is generally known. So, the entire output image should be sharpened to pre-compensate for half-toning blurring [24].

8. Development and Evaluation

Development of a Kansei imaging application is non-trivial, in particular because accurate measures and assessments of enhancement results can only be done by humans. In addition, since the problem is so complex and multi-dimensional, with composition, color, contrast, and myriad other features materially impacting the human emotional effect, any such application will need to be tested and evaluated on a development corpus containing at least thousands and likely tens of thousands of images. It is prohibitively expensive to regularly evaluate changes against such a large corpus because of the skilled human time investment.

One method that has proven useful is to create a large corpus containing a broad range of images, from high quality professional images to poor quality cellphone images by unskilled amateurs, with a broad range of subjects and content. The application may be run on each image, and the output compared to a “golden” result using an image quality assessment tool such as FSS [25]. The images may then be quickly sorted by visible difference to find images which were most significantly impacted by any change. “Golden” result images may be updated when the new result is an improvement.

References

27) Lihao Xu, Baiyue Zhao, and M. R. Luo, "Colour gamut mapping between small and large colour gamuts: Part 1. gamut compression", Optics Express 26(9), April 2018.

