
Light Field Acquisition from Focal Stack via a Deep CNN
Yasutaka Inagaki, Keita Takahashi, Toshiaki Fuji

Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

Keywords: light-field, coded aperture camera, convolutional neural network

ABSTRACT
We succeeded in acquiring a dense light field from

a focal stack, i.e, only a few images with different fo-
cused depth, by using a deep convolutional neural net-
work (CNN) trained for this purpose. We validated our
method through both simulative and real-camera experi-
ments.

1. INTRODUCTION
A light field describes all light rays traveling in a free

three-dimensional space. It is often represented as a set

of dense multi-view images. The light field representa-

tion has been used in various applications, such as 3D

displays [1], view synthesis, and depth estimation.

Acquiring a light field is a challenging task due to the fact

that it consists of dozens of images. The most straight-

forward approach is to use a moving camera gantry or

multiple cameras, which is costly in terms of the hard-

ware or the time required to capture the entire light field.

In another approach, lens-array based cameras can obtain

the entire light field from a single acquired image, but the

spatial resolution of each image is in a trade-off relation-

ship with the number of viewpoints.

In our method, we focus on a different approach based

on compressive sensing, where the entire light field is

computationally reconstructed from less observation data

without sacrificing the spatial resolution of each image.

Compressive sensing can be implemented with several

methods. One popular method is to insert a semi-transparent

coded pattern (coded aperture or coded mask) into the op-

tical path of a camera [2]. Another promising method is

to take several images with different focused depths (a

focal stack) [3].

In our previous work [4], we achieved a state-of-the-

art performance on light-field acquisition using a coded-

aperture camera; we successfully reconstructed 5 × 5 and

8 × 8 light-field images only from two acquired images

by using the powerful framework of convolutional neu-

ral networks (CNNs). In the present paper, we extend the

network developed in the previous work [4] to the light-

field reconstruction from a focal stack. We demonstrate

that only two images that are focused at different depths

are sufficient for light field reconstruction. We also com-

pare the coded aperture (CA) and focal stack (FS) meth-

ods through both simulative experiments and experiments
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Fig. 1: Cameras used for FS (left) and CA (right) meth-

ods.
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Fig. 2: Light field definition inside a camera.

using real cameras shown in Fig. 1.

2. PROPOSED METHOD
2.1 Light field, CA, FS, and compressive acquisition

A light field is defined over a 4D space (s, t,u,v),
and the intensity of a light ray is described as l(s, t,u,v).
In Fig. 2, (s, t) and (u,v) denote the intersections of a

light ray with the aperture and imager planes, respec-

tively. More accurately, the position of the imager plane

changes as the focused depth changes, but the (u,v) co-

ordinate is fixed at a default position. The light field is

equivalently described as a set of rectified multi-view im-

ages called “sub-aperture images”, {xs,t(u,v)= l(s, t,u,v)}.

Here, (s, t) corresponds to the viewpoint defined on the

aperture ((s, t) ∈ A ), where A is a set of small areas on

the aperture plane and has M elements (|A |= M).

In the case of the CA method, we can design an ob-

servation model by changing the semi-transparent code

pattern located on the aperture plane. Let an(s, t) be the

transmittance at position (s, t) for the n-th acquisition (n=
1, . . . ,N). The observed image yn(u,v) is formed as

yn(u,v) = ∑
(s,t)∈A

an(s, t)xs,t(u,v) (1)

In the case of the FS method, we can control the fo-

cused depth for each acquisition. The observed image is
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Fig. 3: Network architecture for compressive light-field acquisition using FS and CA methods.

Table. 1: Channel transitions for reconstruction networks

(NR1, NR2) and disparities for FS method (dn).
N NR1 NR2 dn

1 1→2→5→12→25 0

2 2→5→12→25 25→64→64, ..., 64→25 −1, 1

3 3→6→12→25 −1, 0, 1

modeled by shear-and-add operations as

yn(u,v) = ∑
(s,t)∈A

xs,t(u+dn(sc − s),v+dn(tc − t)). (2)

where (sc, tc) is the central viewpoint and dn is the amount

of shear for the n-th acquisition, which corresponds to the

focused depth.

Reconstructing the light field is equivalent to getting

M sub-aperture images x̂s,t(u,v) from the N given obser-

vations yn(u,v), where x̂s,t(u,v) is an estimation of xs,t(u,v).
In particular, we are interested in the case of N � M,

where the entire light field could be reconstructed from

only a few observed images.

2.2 Formulating Compressive Acquisition Using CNN
The formulation we present here is an extension from

our previous work [4] that was limited to the CA method.

Optimization of compressive observation and recon-

struction can be regarded as a problem of auto-encoder;

M sub-aperture images xs,t(u,v) are once encoded to N
acquired images yn(u,v), and then, they are decoded to

M sub-aperture images x̂s,t(u,v). Specifically, the obser-

vation (encoder) and reconstruction (decoder) processes

can be represented as mappings

f : X → Y , g : Y → X̂ , (3)

where X represents a tensor that contains all the pixels

of xs,t(u,v) for all (s, t) ∈ A . Similarly, Y and X̂ corre-

spond to yn(u,v) and x̂s,t(u,v), respectively. The compos-

ite mapping h = g◦ f should be as close to the identity as

possible, under the condition that N � M. The goal of

optimization is formulated with the squared error loss as

argmin
h

|X −X̂ |2 = argmin
h

∑
s,t,u,v

|xs,t(u,v)− x̂s,t(u,v)|2. (4)

We optimized the h mapping using a collection of train-

ing samples. In the training stage, training samples pass

through the entire network. However, in a real applica-

tion, the f mapping is conducted by the physical imaging

process of a camera, and the acquired images are fed to

the network corresponding to g, by which we can compu-

tationally reconstruct the target light field.

We implemented the composite mapping h = g◦ f as

a stack of 2D convolutional layers. An example with

M = 25 and N = 2 is illustrated in Fig. 3. The f map-

ping corresponds to the network NA. The g mapping is

decomposed into two networks, NR1 and NR2. The for-

mer network NR1 reconstructs the target light field ten-

tatively, and the latter network NR2 refines the output of

NR1. Throughout the networks, the size of images is un-

changed; only the number of channels is changed. The

channel for the input to NA corresponds to the viewpoints

M. Meanwhile, the channel for the output from NA corre-

sponds to the number of the acquired images N. Finally,

the channels for the outputs from NR1 and NR2 corre-

spond again to the viewpoints M. To better simulate the

physical imaging process, Gaussian noise was added to

the acquired images yn(u,v). We consider several net-

work configurations for different values of N, which are

summarized in Table 1 (left).
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In the case of the CA method, the f mapping should

be equivalent to Eq. (1). We implemented this using a

single 2D convolutional layer with 1×1 convolution ker-

nels, where the filter weights are limited within the range

[0,1]. These weights correspond to the transmittance val-

ues an(s, t), which are jointly optimized with the recon-

struction networks in the training stage. Meanwhile, in

the case of the FS method, the f mapping should cor-

responds to Eq. (2). We used a single 2D convolutional

layer with 5×5 convolution kernels, where the filter weights

take binary values in accordance with Eq. (2). Here, the

focused depths dn might be trainable, but in this paper

we fixed them as summarized in Table 1 (right). There-

fore, only the reconstruction networks are optimized in

the training stage.

3. EXPERIMENTS
Figure 4 presents quantitative reconstruction quality

of the FS and CA methods for different numbers of ac-

quisitions and different datasets. We used five datasets

that were not included in the training datasets. The differ-

ence is not significant, so we conclude that both methods

yield satisfactory quality. Several resulting images with

two acquired images are shown in Fig. 5, where top and

bottom rows correspond to the FS and CA methods, re-

spectively. From left to right on each row, two acquired

images, the central view of the reconstructed light field,

and the difference from the ground truth (magnified by

5) are shown. To see the disparities of the reconstructed

light field, epipolar-plane images (EPIs) corresponding to

green and blue lines are also presented.

Finally, we conducted experiments using real cameras

that are shown in Fig. 1. For the FS method, we used a

Nikon D850 camera and a AF-S Micro NIKKOR 60mm

f/2.8G ED lens. The exposure time and the F number

were set to 50 msec and 5.6, respectively. For the CA

method, we used a camera developed in a previous work [5],

where arbitrary aperture pattern can be generated using a

LCoS display that was inserted in the optical path, and the

exposure time was set to 40 msec. We acquired two im-

ages for both methods. Shown in Fig. 6 (a) is the acquisi-

tion setup. The light field obtained with the FS method is

shown in (b). For reference, we captured the same scene

with a narrow aperture (the F number was 32) as shown

in (c). Shown in (d) are two acquired images and a central

view of the reconstructed light field using the FS method.

Shown in (e) are the counterparts using the CA method.

Some close-up images are shown in (f). The output light

field from the CA method was multiplied by three be-

cause it was too dark due to the limited light transmit-

tance of the optical system. The optical system also af-

fected the color rendition. Meanwhile, some details and

disparities were better reconstructed with the CA method.

We believe the overall quality of the light fields obtained

with both methods was of satisfactory level.

4. CONCLUSION
In this paper, we studied two methods for efficient

light field acquisition: one using a coded aperture (CA)

and another using a focal stack (FS). We developed CNNs

that can accept the input from both CA and FS methods

and reconstruct the entire light field. Our experimental

results demonstrate that we can acquire a light field with

sufficient quality from only a few acquired images by ei-

ther of these methods .

However, in real situations, each of the methods has

its own difficulties. The CA method is weak to noise

due to the intentional blocking of light rays at the aper-

ture plane. Moreover, due to the optical system imple-

mentation using a LCoS display, the light transmittance

is much lower than in theory, and the color is also dis-

torted. Meanwhile, in the FS method, we need a me-

chanical movement for changing the focused depth and

post-processing for correcting the zooming ratio of the

acquired images. These issues should be considered in

designing an efficient high-quality acquisition system.
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Fig. 4: Quantitative reconstruction quality of FS and CA methods for different numbers of acquisitions N and different

datasets.

Fig. 5: Simulative experiments with FS (top) and CA (bottom) methods. Left: acquired images. Right: central images of

reconstructed light fields and differences from the ground truth (magnified by 5) with EPIs corresponding to the blue and

green lines.

(a) Experimental setup.

(b) Reconstructed light field (FS).

(c) Center view with narrow aperture

(for reference).

(d) FS method: acquired images (left) and reconstructed central view with EPIs (right).

(e) CA method: acquired images (left) and reconstructed central view with EPIs (right).

(f) Close-ups in the reference (left), FS (center), and CA (right).
Fig. 6: Experiments using real cameras.
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