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ABSTRACT

To create valuable content for haptic display, we have
been developing a method of generating alternative data
from acquired one instead of collecting a vast data from
real textures. We made a data generation model based
on Generative Adversarial Network and held experiments
to evaluate the performance of the model.

1 INTRODUCTION

Along with the development of virtual reality technology,
various tactile displays have been developed. Tactile
displays give tactile sensations to the user when s/he
touches the device. Currently, many tactile displays

employ mechanical vibrations to present tactile sensations.

These displays are called as vibrotactile displays and
there is a large amount of research about them. Many
researchers are developing systems that employ recorded
vibration as a tactile signal, and these systems present
high-quality tactile sensations [1] [2]. The vibrations are
generally collected with an acceleration sensor by the
rubbing movement over real objects. Numerous research
projects are carried out with regard to collecting the
vibration from real objects [3] [4]. For example, Strese et
al. [4] collected six types of data (acceleration, pressure,
temperature, photo, sound, and power of the magnetic
field) for 108 types of textures via a pen-typed sensing
device. They rubbed the textures in one direction with the
device and collected the data. They collected a lot of types
of data under various kinds of conditions. However, their
conditions of contact are fixed, for example, in rubbing
direction, or in a contact angle of the device toward a
texture.

Acts of touch are bidirectional phenomena. If the
surface conditions, physical characteristics, or rubbing
speed are different between the contactor and the
contacted object, the induced phenomena are different
between them. Therefore, it is unrealistic to collect all data
under numerous combinations of conditions. To solve the
problem, Ujitoko et al. [5] proposed the method to generate
alternative data from known data instead of exhaustive
data collection. The method can generate data that is
similar to known data. However, the method cannot
generate data that are different from known ones.

The goal of our research is to realize the system which
generates unknown data from recorded one. The
generated data should be alternative to data under
different conditions from recorded vibration data. If the
system is realized, we can reduce the cost of data
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collection, and obtain various unrecorded contents for
vibrotactile displays from recorded one.

As a first step toward realizing the system, we
propose a machine learning model using a Generative

Adversarial Network (GAN) [6] to generate vibration data.

GAN is one of the machine learning methods and mainly
used for image generation. GAN can generate data that
is similar to training data. GAN is composed of two
models: generator and discriminator. The generator
generates data, and the discriminator classifies the
generated data and training data. The discriminator is
trained to classify the two types of data accurately. The
generator is trained to generate data that the
discriminator cannot classify. After the repetitive training
of the generator and the discriminator, the generator can
generate data that is almost same to training data. By
adjusting the configuration of GAN appropriately, GAN
can generate data that is alternative to data under
different conditions [7]. Also, in recent research, GAN
can learn time-series data accurately. In the field of
speech synthesis, several researchers have been using
GAN, and they have successfully generated unrecorded
speech data [8] [9].

We previously used a model based on Deep
Convolutional GAN (DCGAN) [7] for the data generation
[10]. In this paper, we use the model based on
WaveGAN [9] for the data generation. WaveGAN is one
of the GAN models for speech synthesis. Also, we held
a data generation experiment to verify whether the
generated model could generate vibration data
effectively. In this experiment, we used 3-axis
acceleration data as training data for the model. This
data was collected by the experimenter with a 3-axis
accelerometer on his finger. The GAN we have modeled
generates data similar to the training data. In the rest of
the paper, we explain the detail of the experiment, and
discuss the result of the experiment.

2 ARCHITECTURE OF PROPOSED GAN MODEL
In this section, we explain the architecture of the
proposed GAN model. In our research, the training data

to make the GAN model is 3-axis acceleration.
Currently, we are investigating what kind of setting is
adequate to generate mechanical vibration data. As a
first step, we are going to generate mechanical vibration
data similar to the training data. We have composed a
GAN model which is based on the WaveGAN [8]. This
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is a model for speech synthesis. The model is composed
of DCGAN and WGAN-GP. The model was trained with a
subset which consists of the spoken digits from “zero” to
“nine,” and the model generates sounds that are similar
to the subset. Generally, sound data is time-series data,
and mechanical acceleration data is also time-series
data. Therefore, WaveGAN is suitable for generating
mechanical vibration data. In the preliminary research,
the proposed GAN model is set to generate data that is
similar to the training data. Under this setting, we first
confirmed whether the model could learn the features of
training data effectively in generating unknown data.

The architecture of the model has fewer convolutional
layers than the original WaveGAN because the length of
our training data is shorter than the sound data in the
WaveGAN. Usually, the convolution layer reduces the
size of the propagating data and summarizes the overall
characteristics. If we use the same architecture with
WaveGAN, our data will become too short because of the
shorter length of our training data. Therefore, we reduce
convolutional layers and suppress the shortage of data.

WaveGAN is based on DCGAN by Radford et al. [7].
However, unlike Radford’s model, it has one-dimensional
convolution filters and strides. These settings increase
the amount of convolution in the temporal direction and
enable it to learn one-dimensional time-series data
effectively. However, we use 3-axis time-series data of
mechanical vibrotactile signals. Therefore, we made three
models for each axis of the training data independently in
order to apply the architecture of WaveGAN to the 3-axis
data. Fig. 1 shows the architecture of the model. The
detailed settings for each model are shown below.
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Fig. 1 Architecture of the GAN
FC is a fully connected layer. Conv is a convolution layer.
Deconv is a deconvolution layer.

The input data of the generator is a 1x100 of noise
vector based on a uniform distribution from -1 to 1. The
output data is generated data that depends on training
data. The size of the convolution filters is set to 1x25, and
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strides are set to 1x4. The activation function for the
output layer is set to the hyperbolic tangent function,
and that for the others is set to the ReLU function. The
learning rate optimizer is set to Adam [13]. Next, the
input data of the discriminator is the training data or the
generated data by the generator. The training data is
normalized between -1 and 1. The output data is the
probability of whether input data is generated by data or
not. The size of the convolution filters is set to 1x25,
and strides are set to 1x4. For the output layer, the
activation function is set to the sigmoid function, and
that for the others is set to the Leaky ReLU function (a
= 0.2). The learning rate optimizer is set to Adam. In
addition, we used WGAN-GP to suppress the vanishing
gradient.

3 EXPERIMENT

In this section, we describe the data generation
experiment with the proposed GAN model. We evaluated
whether the model is appropriate for data generation
from 3-axis acceleration data.

3.1 Settings

The training data was 3-axis acceleration data
collected by an experimenter. We used a 100 mm x 100
mm sized artificial lawn texture for this experiment. Fig.2
shows the texture and how the data was collected. The
accelerometer was placed on the nail of the finger. The
experimenter rubbed the texture in one direction from left
to right for 5 seconds at a speed of 5 cm/s and collected
3-axis acceleration data at a sampling rate of 1kHz. He
performed this trial 90 times and collected 450,000
points of 3-axis acceleration data (the length is
approximately 7 minutes and 30 seconds).

Fig. 2 Texture and data collection
Top: Texture used in the experiment. Bottom right: A
fingertip with an accelerometer attached. The sensor
axis is the X-axis in the horizontal direction, the Y-axis
in the vertical direction, and the Z-axis in the depth
direction. Bottom left: How the data was collected.

We trained the model using the collected data and
generated data. We extracted 70,000 datasets of 1,024



sequential points randomly from the collected data and
employed them as training data. During the training, the
mini-batch size was set to 64, and the number of epochs
was set to 200. After the training, we generated data using
the trained model.

3.2 Results and Discussion

In this section, we describe the data generation result
of the experiment. Fig. 3 shows three sets of graphs —
one set (three graphs) for each axis. The graph at the left
and the middle depict an example data sampled from the
training data and the generated data, respectively. The
graph at the right shows both of them. The vertical axis of
the graph is the output value of the model, and the value
is between -1 and 1. The horizontal axis is a temporal
index. The data has a length of 1,024 points per data in
time series.
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Fig. 3 Result of the generation with 200 epochs
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From the results of the X-axis (the three graphs at the
top of Fig. 3) and the Z-axis (the three graphs at the middle
of Fig. 3), the characteristics of the training data are almost
reproduced. The center values of the generated data are
similar to training data. From these results, we found that
the model is possible to generate data effectively for X and
Z-axis.

From the results of the Y-axis (the three graphs at the
bottom of Fig. 3), the generated data does not have
characteristics of the training data. Contrary to the training
data, data with a flat waveform was generated. It appears
that learning was insufficient for the Y-axis. Therefore, we
increased epochs to be 800 and generated data. Fig. 4
shows the result for 800 epochs. From the result, we can
observe that the generated data has characteristics of the
training data. Therefore, the model can generate data
effectively through an appropriate learning amount.
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Fig. 4 Result of the generation with 800 epochs
about Y-axis

4 CONCLUSION AND FUTURE WORK

We proposed to use the GAN to generate unknown
vibrotactile data from recorded data. As the first step of
realizing the proposed method, we made the model
based on WaveGAN. We used a 3-axis acceleration as
vibrotactile signals. Since the signals are 3-axis time-
series data, we made the model for each axis
independently. We held the data generation experiment
using the proposed model and compared the generated
data with the training data. As a result, the model
generated the data similar to training data for each axis.
Therefore, we found that there is a possibility that the
model can generate data with vibration data.

In the future, we will improve the model to generate
data that is not similar to the training data. Specifically,
we will implement Conditional GAN [14]. The GAN can
learn label data as well as training data at the same time
if users use label data during data generation, it can
generate the data corresponding to the label. If we
operate the label appropriately, there is a possibility that
the model generates the data which are different from
known vibration data. In addition, we will evaluate the
model based on T-SNE analysis in the same way as
Ujitoko et al. [5] in order to evaluate the model more
quantitatively. After that, we will present tactile
sensations based on the generated data to human
subjects in order to evaluate the generated data
subjectively.
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