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ABSTRACT

In this paper, we report results of our experiments where
deep neural networks (DNNs) are adopted to perform the
light-field image processing. Experimental results show
that we can successfully reduce the computation cost by
using DNN with almost the same performance of
conventional methods.

1 INTRODUCTION

Three-dimensional image processing has a long history
and many researches have been conducted on this topic.
Among them, the capturing and displaying of light fields
used to be a straightforward process and the amount of
computation was not a serious problem so far. However,
new technologies have emerged in this fields, such as a
computational camera and a computational display, and
these technologies require high computation. On the other
hand, deep neural network (DNN) has been introduced
and applied to various research fields and it showed high
performance in various problems. The DNN could provide
a solution for the problem of high computation cost for
image processing researches. In this paper, we first
introduce the light field concept, and then we review the
state-of-the-art light field acquisition and display systems

and point out that these systems require huge computation.

Finally, we introduce some examples where DNN helps to
solve the problem.

2 DEFINITION OF LIGHT FIELD

We see a 3D scene by our eyes that have the same
mechanism as an optical camera, which is a device that
records light rays from a 3D scene. This means that we
obtain our visual information from a collection of light rays
from the scene. Therefore, if we can represent a collection
of light rays, we can represent 3D visual information of the
scene. Ray space [1] and Light field [2] are proposed
based on this notion. Figure 1 shows one of the
parameterization methods of a light field [1], which is called
ray space. In the light field concept, it can be seen that
capturing and displaying of a 3D scene is equivalent to
capturing and displaying a light field. In this paper, we deal
with the problem of light field acquisition and display from
this perspective.
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Fig. 2 Example of ray space.

3 DIMENSIONALITY REDUCTION OF LIGHT FIELD

A light field is equivalent to a large number of
multiview images taken with very dense camera spacing.
It means that a light field consists of a bunch of images
of a scene taken from slightly different viewing directions.
Therefore, a light field has much redundancy in both
spatial and view axis directions. This characteristic has
been utilized in various light-field processing, such as
view interpolation, data compression, compressed
sensing, and compressed display.

Based on the redundancy of a light field, we can
reduce the dimension of the light field using DNN as
shown in Fig. 3. The input light field is the original light
field, e.g. M = 5 x 5 multiview images captured by a 2D
camera array. The input light field is reduced by a
mapping f to an intermediate representation which is
composed of just a few (N) images. The original light field
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Fig. 3 Dimensionality reduction of light field.

is reconstructed from the intermediate representation by a
mapping g using DNN. This formulation can be viewed as
an autoencoder, which is known as a type of artificial
neural network used to learn efficient data coding in an
unsupervised manner. The composite mapping h =g o
f'should be as close to the identity as possible, under the
condition that N «< M.

This formulation indicates the following two things: (1) a
light filed can be reduced by using a DNN to a couple of
images, which include all the information on the original
light field data, (2) a light field can be reconstructed by
using a DNN from a few images which are captured by a
specific optical system in a compressive manner. From
this viewpoint, we apply a DNN computation to light field
acquisition and display.

4 LIGHT FIELD ACQUISITION

Light field acquisition in a compressive way is
formulated as follows. Input light field is captured through
a specific optical system such as a coded aperture camera
or a focal stack, which corresponds to the N observations.
This is a physical system and can be viewed as the
mapping f in Fig. 3. Then the original light field is
reconstructed through the computation. Note that the
number of observations N is greatly smaller than the
number of original images. In the following we take two
examples in which heavy computation is required for the
naive implementation and try to reduce it by adopting DNN
for the reconstruction computation of the light field data.

4.1 Coded Aperture Camera and Focal Stack

Here, we introduce two methods to acquire a light field
in a compressive way. The first method is to use a coded
aperture camera, which is equipped with a semi-
transparent coded pattern (coded aperture: CA) in the
optical path of a camera. The second method is to capture
a focal stack (FS), which is composed of several images
taken with different focused depth.

To formulate the above-mentioned acquisition methods,
we introduce a coordinate system shown in Fig. 4. In the
figure, a 4-D light field I(s,t,u, v) is defined, where (s, t)
denote the viewpoint of a sub-aperture image and (u, v)
denotes image coordinates. In this coordinate system, we
can describe a sub-aperture image as xg.(u,v)=
I(s, t,u,v).

In the CA case, the observed image y,(u,v) is
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represented as

@) = ) ans O xs,wv), (1)
st

where a,(s,t) is the transmission at position (s,t). On
the other hand, FS is represented as

Ynuw) = Z xs,t(u +dps, v+ dyt), 2)

st

where d,, is the focused depth.

Reconstructing the light field is equivalent to
reconstructing M sub-aperture images £ . (u, v) from the
N observations y, (u, v), where %, . (u, v) is an estimation
of xs.(u,v). In the previous work, we formulated the
reconstruction problem from the perspective of principal
component analysis (PCA) and non-negative matrix
factorization (NMF) [6]. From this formulation, we derived
optimal non-negative aperture patterns and a straight-
forward reconstruction algorithm.

4.2 Light Field Reconstruction using DNN
In the DNN method, we define the loss function as
follows:

. ~ 2
argm1n|xs,t(u, v) — %5, (1, V)| ’ &)
h=geof

and train the network and obtain the mapping g. Note
that in a real application, the mapping f is conducted by
the physical imaging process of a camera, and the
acquired images are fed to the network corresponding to
g, by which we can computationally reconstruct the
target light field.

We implemented the composite mapping h =g o f as
a stack of 2D convolutional layers. An example with M =
25 and N = 2 isillustrated in Fig. 5.
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Fig. 4 Light field definition inside a camera.
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Fig. 5 Network architecture for compressive light field acquisition [9]

Fig. 6 Experimental results with focal stack (top) and
coded aperture (bottom) methods [9].

Figure 6 shows the results of our simulation, where left
images are acquired images and right images are central
images of reconstructed light fields with EPls
corresponding to the blue and green lines. We can see the
entire light field is well reconstructed from only N =2
observations in both CA and FS cases. For more details
please refer to [9].

5 LIGHT FIELD DISPLAY

There are various kinds of light field display including a
lenslet-based display (e.g. Integral photography) and a
barrier-based display. Here we focus on a stacked layer
type display shown in Fig. 7. In the following, we describe
how the stacked layer light field display works and show
that it requires huge computation to calculate the layer
patterns.

Fig. 7 Layered light field display.
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5.1 Layered Light Field Display

In a layered light field display, each pixel of the light
attenuating layers has an individual transmittance and
the layer patterns are optimized so as to reproduce the
light field as faithfully as possible. Let T;,(x, y) denote the
transmittance of the n-th layer and a backlight luminance
L be attenuated by T,(x,y). A light ray i(s,t,x,y) is
expressed as

1
I(s,t,x,y) =L 1_[ T,(x + ns,y + nt).

n=-1

C))

The optimal T,,(x,y) is derived through the following
optimization:

arg min Z
T,

n
stxy

2

1
Ige(x,y) — 1_[ T,(x+ns,y+nt)| , (5

n=-1

where 0 < T,,(x,y) < 1. This optimization is conducted
through non-negative tensor factorization (NTF). Please
refer to the original paper [3] for descriptions of the
optimization method and the extension to time
multiplexing. Since the transmittance values are
alternately updated layer by layer, it requires heavy
computations.

5.2 Calculation of Layer Patterns Using CNN

We conducted an experiment where we adopted CNN
for the calculation instead of the iterative updates. Here,
the mapping g in Fig. 3 is implemented as the CNN. The
process flow from capturing multi-view images to
displaying the light field is illustrated in Fig. 8. The input
to the network is the patches of I; . (x, y) and output is the
patches of T, (x,y). This one directional computation
reduces computations and increases the calculation
speed, avoiding computationally heavy iterations. As a
numerical example, the calculation of layer patterns
using NTF took about 12 seconds with 50 iterations,
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Fig. 8 Process flow from capture to display.

while CNN took 0.03 seconds in the same condition with
the comparative quality (PSNR = -3 [dB]). Based on this
result, we developed a full pipeline system from capture to
display of the light field of a real 3D scene. In this prototype
system, we used a multi-view camera (ViewPLUS
ProFUSIOIN 25) to capture a light field. The 5 x 5 multi-
view images captured by the ProFUSION25 are
transferred to the PC. Rectification of the Multiview images
and adjustment of convergence plane are performed on
the central 3 x 3 views, and the appropriate layer pattern
is calculated from the processed multi-view images using
the CNN and fed to the layered display. For more details,
please refer to [10].

6 SUMMARY

In this paper, we gave an overview of our light field
image processing researches using deep neural networks.
First, light field acquisition and display is formulated as an
autoencoder. It is viewed as the composite mapping h =
g o f,where f is the encoder and g is the decoder. For the
light field acquisition, f is a physical process and is
implemented as a specific optical device. In this case, the
mapping g is implemented by using DNN. From this
viewpoint, we introduced two examples, where f is a case
of a coded aperture camera and a focal stack. For the
display, we introduced a layered light field display, where
g is a physical process and DNN is used to implement the
mapping f. We developed a real-time full chain system
from multiview image capturing to display. In future works,
we will develop a full DNN-based system from capture to
display based on these results.
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