

Hardware Acceleration for Multi-Scale Object Detection Based
on Dense Pyramid Feature

Congrui Wu1, Tianmin Rao, Ran Duan, Xiao Zhang1
1 BOE Technology Group Co., Ltd

Keywords: Hardware Acceleration, Object Detection, ACF Detector.

ABSTRACT
ACF is a method for object detection which

approximately constructing a dense feature pyramid used
for Adaboost classifier. Our work focuses on this method
and implement the whole detection process on
heterogeneous hardware platform. This design achieves a
detection performance of 134 fps consuming less
hardware resources.

1 INTRODUCTION
Recent works focus on object detection aims at real-

time processing while achieving high performance. A great
deal of work has been done to design good detectors and
also newly emerged deep learning methods draw much
attention. However, the deep learning based method
needs complex design and huge resources consumption.
This leads to high energy cost and difficult for embedded
deployment. For this reason, some hardware
implementations focus on traditional image features
combined with machine learning and make effect on
improving the processing efficiency. In this field, HOG [2]
which describe the geometry edge from gradient
information draw much of the attention, and plenty of
hardware acceleration work such as [3] [4] [5] [6] [7], focus
on how to implement this algorithm efficiently and propose
simplified methods or other optimized designs.

For multi-scale detection, the HOG-like feature is
suffered from the repetitive work on feature calculating of
scaled-images. This pixel-level pre-process costs much
computation burden and especially makes trouble in
hardware design. To optimize this, DollÁr et al. [8]
proposal a Fast Feature Pyramid method to reduce
complexity and further apply to object detection [1]. Our
work utilizes this method and implement a 29-scale dense
feature pyramid construction based on pipeline structure
on the heterogeneous platform of ZYNQ. The
implementation is designed in cost-sensitive and achieve
134 fps for feature construction.

The rest of this work is organized as follows. In Sec.2,
the overall of dense feature pyramid construction and ACF
based detection flow is introduced. The main idea of
complexity reduction and robust objection flow are
introduced. In Sec.3, the hardware implementation is
shown in the detailed module diagram. In Sec.4 the
hardware performance is discussed and the conclusions
of this work are presented in Sec.5.

2 ALGORITHM OVERVIEW
The feature pyramid is a set of representations of an

image which contains multi-scale information. HOG-like
methods construct the pyramid by resizing the original
image N times and then compute features respectively.
To optimize this, [8] proposes a Fast Feature Pyramid to
construct a dense pyramid. In [1], the method is further
combined with Adaboost and gains robust detection
performance, which is called ACF. A brief introduction of
the algorithm is given in this section.

2.1 Fast Feature Pyramid Construction
In traditional HOG-like method, each layer of the

feature pyramid is calculate from the resized image of a
certain scale. In Fast Feature Pyramid construction, the
feature-pyramid is divided into two sub-parts, the base
layers and the extension layers. Base-layer feature is
calculated from the scaled image data, while extension-
layer feature is approximated calculated from
neighboring base-layer features reducing the
computation to one-third. As shown in Fig.1 and Fig.2
are two different feature construction pipelines of
traditional HOG-like method and Fast Feature Pyramid.

Fig. 1 Traditional method

Fig. 2. Fast feature pyramid

This process of fast feature pyramid could be
described as below, for a input image I, we define the
base-feature , a channel of base-layer in the
feature pyramid, as

,
And define the extension-feature , a channel of

extension-layer based on base-layer in the feature
pyramid, as

,
Here is a set of parameters pre-trained for

AISp1/DESp2 - 1

ISSN-L 1883-2490/26/0039 © 2019 ITE and SID IDW ’19 39

feature scaling. This approximation avoid the repeating
work of feature extracting from all scaled images so that
reduce the computation complexity.

After experimental testing, this optimized algorithm is
confirmed to be well working and the detection speed is
obviously improved at the cost of only a small loss of
detection accuracy.

2.2 Object detection flow
The target of Fast Feature Pyramid flow is to construct

a dense feature pyramid for object detection. To applying
sliding windows for detection, these features are further
aggregated. This processing flow is called Aggregate
Channel Features (ACF). For object detection, each
computed scale contains 10 feature channels. As
demonstrated in [8], LUV color information and histogram
of oriented gradients (6 channels) with magnitude are
concluded. Then, features in each channel are sum by
each pixel block accordingly. After vectorizing, the data is
applied by Adaboost classifiers for objection detection.
The flow is showed in Fig.3.

...

vectorize
Color Channel

LUV

Normalized Gradient
Magnitude

Histogram of
Oriented Gradients

H6

H1
...

Applying Adaboost
Classifier for Detection

Aggregate

Fig.3 Object detection flow based on ACF

To conclude, the overall detection flow contains two
parts: a Fast Feature Pyramid constructed by
approximating nearby scales and Adaboost classifiers for
a well detection performance.

3 HARDWARE IMPLEMENTATION
In this section, the overall hardware implementation is

introduced. To implement the structure described in Sec.
2, a heterogeneous platform called ZYNQ is utilized. This
platform integrate both FPGA and ARM processor on a
single SoC, of which PL (Programmable Logic) means the
FPGA resources on SoC and PS (Processing System)
refers to the ARM core on SoC. This structure is suitable
for the system aims at high speed pixel-level processing
with higher level instruction control.

3.1 Overview of hardware implementation
In hardware implementation, a heterogeneous pipeline

architecture is designed to make data flow processing
more efficient. As shown in Fig.4, the overall
implementation of the system consists of a heterogeneous
architecture of PS and PL, of which PL implements feature
extraction and PS implements classification detection.

In PL implementation, we firstly calculate the base-layer
features in parallel structure based on some certain
scales (S0, S4, S8, and S16) which are scaled from the
input image driven by the source clock. Then extension-

layers could be calculated in pipeline structure
driven by a high frequency clock. In PS implementation,
the 29-layer feature is used for object detection with
Adaboost classifiers. The parameters pre-trained for
Adaboost classifying is loaded into the specific address
area in the DDR memory when the system is powered
on. PS will receive an interrupt signal after 29-layer
feature calculation is completed, then both the
parameters and the features would be load into the
Adaboost classifiers for detection.

Video
Source

Feature
Extraction

DMA

DDR3Dynamic
Object Detection

OSD
Blending

AXI Interconnect
(AXI_Lite)

DMA Schedual
(Interrupt)

DMA

DMA

DMA

DDR
Controller

PS

PL
Interrupts

From DMAs

Video
Out

Video Pass Through

Color Format
Convertor

GP Port

AXI
Interconnect

AXI
Interconnect

...

GP Port HP PortIRQ

Monitor

...Base
Layers

Extension
Layers

Scaler

Fig. 4 Block level overview of hardware
implementation

3.2 Base-layer feature construction
Fig.5 shows the details of base-layer feature design in

the PL implementation. The input RGB image is
converted into LUV first. This step is design for obtaining
a more robustness feature. Compared with RGB color
space, the LUV format is easier to further calculate
gradient information. Then, 4 parallel image resizing
operation is deployment and 4 base-layer is constructed.
The down scalar for 4 base-layer is design to calculate
in cascade flow, and both the width and length of each
sub-scale is the half of the previous. Thus the model is
reused and efficiently gain resized images. After getting
resizing results, the “Base-layer Feature Calc” model is
responsible to construct the gradient feature channels.
Since the grayscale information of the image is fully
contained in the “L” channel of the LUV color space, the
calculation for gradient data only need to be operated on
this data space.

Grad_
Calc FilterHist_

Calc

Grad_
Calc FilterHist_

Calc

Grad_
Calc FilterHist_

Calc

Grad_
Calc FilterHist_

Calc

Convert
_LUV

640x480

DS_
320x240

DS_
40x30

DS_
160x120

DS_
80x60

DT_
Stream WDMA

DT_
Stream WDMA

DT_
Stream WDMA

DT_
Stream WDMA

Fig. 5 Base-layer feature construction

3.3 Extension-layer Feature Construction
Fig.6 shows the details of extension-layer feature

design in the PL implementation. The resizing for
neighboring base-layer feature applied by vertical and

40 IDW ’19

horizontal. In order to reduce hardware resource
consumption, this process is designed as a structure for
serial computing by module multiplexing. The parameters
for scaling is stored in ROM as LUT to speed up the
process. After approximating, a smoothing filter is also
applied for better performance.

PS

HP Port

GP Port Inter-
connet

Inter-
connet RDMA

Hor_Param Ver_Param

Hor_
Scaler

Ver_
Scaler Filter DT_

Stream WDMA

Feature TransferExtension_Layer Feature_ScalerConsole Commands

Fig. 6 Extension-layer feature construction

3.4 Objection Detection based on ACF
Hardware implementation of feature pyramid

construction generates all feature data needed for
detection. Following is the objection detection based on
ACF algorithm, which is implemented on the PS sub-part.

In the PS design, to achieve object detection with
Adaboost classifier, a sliding window based processing
flow is done on each feature layer of the dense feature
pyramid containing 10 channels. In this work the size of
sliding window is design to be 64x64 for a better
performance. The detection result returns the coordinate
of a bounding box position along with the score.

4 Evaluation

4.1 Evaluation Platform
The evaluation is based on the Xilinx ZYNQ evaluation

board ZC706. The whole platform is show in Fig.7.
2 HDMI cards are connected to transfer 640x480 video

and the detection result is showed on the monitor. An
UART cable is connected to sending back running
information. SD-Card is used for loading Adaboost model
and sending back detection result for further evaluation.
The evaluation utilizes INRIA data set [9] and the
evaluation method.

4.2 Performance
In this section, the performance of this implementation

is showed. Since few hardware implementation has been
published for Fast Feature Pyramid of ACF, we choose
several HOG-like object detection works for comparison to
show the performance.

In table 1, the hardware resources and the detection
performances are list out. The main contribution of this
work is to construct a dense feature pyramid for object
detection and save the hardware resource as much as
possible. Many other works focus on single-scale
processing, such as [3] [6]. To compare these
implementations with our work, the hardware reports are
equally transferred to show how many resources are
utilized for a single-scale processing.

In Fig.8, a demo is showed for this system. By
connecting to the video input from PC (a piece of video
taken from the road), the result is showed on the screen
which indicated by red box.

Fig. 7 Hardware test environment

Demonstration Result Display

FPGA Evaluation Board
Fig. 8 Real time object detection demonstration

5 CONCLUSIONS
This work accelerates dense feature pyramid

construction and followed by detection flow based on
ACF. Compared to HOG-like based implementation, the
average hardware cost is extremely low due to the
nearby scale approximation and the cascade processing
on heterogeneous platform ZYNQ. The construction of
29-scale pyramid achieve 134 fps and obtain good
detection performance through ACF method. For now, a
real-time demonstration could be showed and further of
this design is aiming at the potential cost-sensitive
application in different scenes.

Table 1 Hardware performance comparison between this work and HOG-like works
Publication [3] [4] [5] [6] [7] This work

Year 2012 2013 2015 2015 2017 2018
FPGA Cyclone IV Xilinx Virtex5 Xilinx Zynq Xilinx Virtex6 Altera Stratix V Xilinx Zynq
LUTs 34,403 5,188 21,297 98,642 3529 1237
Reg. 23,247 5,178 5,942 8694 2657 1638
DSPs 68 49 4 62 26 8

Clock Rate[MHz] 40 135 + 270 82.2 70 + 140 142 + 284 27 + 200
Resolution 800×600 1920×1080 1920×1080 640×480 1920×1080 640×480

Data rate[fps] 72 64 40 250 68 134
Detection rate 87% 84% 90% 90% 87% 92.4%

IDW ’19 41

REFERENCES
[1] P. DollÁr, R. Appel, S. Belongie, and P. Perona, “Fast

feature pyramids for object detection,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 36, no. 8, pp. 1532–1545, Aug 2014.

[2] N. Dalal and B. Triggs, “Histograms of oriented
gradients for human detection,” 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), June 2005, vol. 1, pp. 886–
893 vol. 1.

[3] K Mizuno, Y Terachi, K Takagi, and S Izumi,
“Architectural study of hog feature extraction
processor for real-time object detection,” vol. 52, no.
11, pp. 197–202, 2012.

[4] [4] Michael Hahnle, Frerk Saxen, Matthias Hisung,
Ulrich Brunsmann, and Konrad Doll, “FPGA-based
real-time pedestrian detection on high-resolution
images,” 2013, pp. 629–635.

[5] Jens Rettkowski, Andrew Boutros, and Diana

Göhringer, “Real-time pedestrian detection on a
XILINX ZYNQ using the HOG algorithm,” in
International Conference on Reconfigurable
Computing and FPGAs, 2016, pp. 1–8.

[6] Xiaoyin Ma, Walid A. Najjar, and Amit K. Roy-
Chowdhury, “Evaluation and acceleration of high-
throughput fixed-point object detection on FPGAs,”
IEEE Transactions on Circuits and Systems for
Video Technology, vol. 25, no. 6, pp. 1051–1062,
2015.

[7] Jan Drre, Dario Paradzik, and Holger Blume, “A hog-
based real-time and multi-scale pedestrian detector
demonstration system on FPGA,” in ACM/SIGDA
International Symposium, 2018, pp. 163–172.

[8] P. DollÁr, S. Belongie, and P. Perona, “The fastest
pedestrian detector in the west,” in BMVC, 2010.

[9] “Inria dataset: http://pascal.inrialpes.fr/data/hu
man/”.

42 IDW ’19

