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ABSTRACT 
ACF is a method for object detection which 

approximately constructing a dense feature pyramid used 
for Adaboost classifier. Our work focuses on this method 
and implement the whole detection process on 
heterogeneous hardware platform. This design achieves a 
detection performance of 134 fps consuming less 
hardware resources. 

1 INTRODUCTION 
Recent works focus on object detection aims at real-

time processing while achieving high performance. A great 
deal of work has been done to design good detectors and 
also newly emerged deep learning methods draw much 
attention. However, the deep learning based method 
needs complex design and huge resources consumption. 
This leads to high energy cost and difficult for embedded 
deployment. For this reason, some hardware 
implementations focus on traditional image features 
combined with machine learning and make effect on 
improving the processing efficiency. In this field, HOG [2] 
which describe the geometry edge from gradient 
information draw much of the attention, and plenty of 
hardware acceleration work such as [3] [4] [5] [6] [7], focus 
on how to implement this algorithm efficiently and propose 
simplified methods or other optimized designs.  

For multi-scale detection, the HOG-like feature is 
suffered from the repetitive work on feature calculating of 
scaled-images. This pixel-level pre-process costs much 
computation burden and especially makes trouble in 
hardware design. To optimize this, DollÁr et al. [8] 
proposal a Fast Feature Pyramid method to reduce 
complexity and further apply to object detection [1]. Our 
work utilizes this method and implement a 29-scale dense 
feature pyramid construction based on pipeline structure 
on the heterogeneous platform of ZYNQ. The 
implementation is designed in cost-sensitive and achieve 
134 fps for feature construction. 

The rest of this work is organized as follows. In Sec.2, 
the overall of dense feature pyramid construction and ACF 
based detection flow is introduced. The main idea of 
complexity reduction and robust objection flow are 
introduced. In Sec.3, the hardware implementation is 
shown in the detailed module diagram. In Sec.4 the 
hardware performance is discussed and the conclusions 
of this work are presented in Sec.5.  

2 ALGORITHM OVERVIEW 
The feature pyramid is a set of representations of an 

image which contains multi-scale information. HOG-like 
methods construct the pyramid by resizing the original 
image N times and then compute features respectively. 
To optimize this, [8] proposes a Fast Feature Pyramid to 
construct a dense pyramid.  In [1], the method is further 
combined with Adaboost and gains robust detection 
performance, which is called ACF. A brief introduction of 
the algorithm is given in this section.  

2.1 Fast Feature Pyramid Construction 
In traditional HOG-like method, each layer of the 

feature pyramid is calculate from the resized image of a 
certain scale. In Fast Feature Pyramid construction, the 
feature-pyramid is divided into two sub-parts, the base 
layers and the extension layers. Base-layer feature is 
calculated from the scaled image data, while extension-
layer feature is approximated calculated from 
neighboring base-layer features reducing the 
computation to one-third. As shown in Fig.1 and Fig.2 
are two different feature construction pipelines of 
traditional HOG-like method and Fast Feature Pyramid. 

Fig. 1 Traditional method 

 
Fig. 2. Fast feature pyramid

This process of fast feature pyramid could be 
described as below, for a input image I, we define the 
base-feature , a channel of base-layer  in the 
feature pyramid, as 

, 
And define the extension-feature , a channel of 

extension-layer  based on base-layer  in the feature 
pyramid, as 

, 
Here  is a set of parameters pre-trained for 
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feature scaling. This approximation avoid the repeating 
work of feature extracting from all scaled images so that 
reduce the computation complexity. 

After experimental testing, this optimized algorithm is 
confirmed to be well working and the detection speed is 
obviously improved at the cost of only a small loss of 
detection accuracy. 

2.2 Object detection flow 
The target of Fast Feature Pyramid flow is to construct 

a dense feature pyramid for object detection. To applying 
sliding windows for detection, these features are further 
aggregated. This processing flow is called Aggregate 
Channel Features (ACF). For object detection, each 
computed scale contains 10 feature channels. As 
demonstrated in [8], LUV color information and histogram 
of oriented gradients (6 channels) with magnitude are 
concluded. Then, features in each channel are sum by 
each pixel block accordingly. After vectorizing, the data is 
applied by Adaboost classifiers for objection detection. 
The flow is showed in Fig.3. 
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Fig.3 Object detection flow based on ACF 

To conclude, the overall detection flow contains two 
parts: a Fast Feature Pyramid constructed by 
approximating nearby scales and Adaboost classifiers for 
a well detection performance.  

3 HARDWARE IMPLEMENTATION 
In this section, the overall hardware implementation is 

introduced. To implement the structure described in Sec. 
2, a heterogeneous platform called ZYNQ is utilized. This 
platform integrate both FPGA and ARM processor on a 
single SoC, of which PL (Programmable Logic) means the 
FPGA resources on SoC and PS (Processing System) 
refers to the ARM core on SoC. This structure is suitable 
for the system aims at high speed pixel-level processing 
with higher level instruction control.  

3.1 Overview of hardware implementation 
In hardware implementation, a heterogeneous pipeline 

architecture is designed to make data flow processing 
more efficient. As shown in Fig.4, the overall 
implementation of the system consists of a heterogeneous 
architecture of PS and PL, of which PL implements feature 
extraction and PS implements classification detection.  

In PL implementation, we firstly calculate the base-layer 
features  in parallel structure based on some certain 
scales (S0, S4, S8, and S16) which are scaled from the 
input image driven by the source clock. Then extension-

layers  could be calculated in pipeline structure 
driven by a high frequency clock. In PS implementation, 
the 29-layer feature is used for object detection with 
Adaboost classifiers. The parameters pre-trained for 
Adaboost classifying is loaded into the specific address 
area in the DDR memory when the system is powered 
on. PS will receive an interrupt signal after 29-layer 
feature calculation is completed, then both the 
parameters and the features would be load into the 
Adaboost classifiers for detection.  
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Fig. 4 Block level overview of hardware 
implementation 

3.2 Base-layer feature construction 
Fig.5 shows the details of base-layer feature design in 

the PL implementation. The input RGB image is 
converted into LUV first. This step is design for obtaining 
a more robustness feature. Compared with RGB color 
space, the LUV format is easier to further calculate 
gradient information. Then, 4 parallel image resizing 
operation is deployment and 4 base-layer is constructed. 
The down scalar for 4 base-layer is design to calculate 
in cascade flow, and both the width and length of each 
sub-scale is the half of the previous. Thus the model is 
reused and efficiently gain resized images. After getting 
resizing results, the “Base-layer Feature Calc” model is 
responsible to construct the gradient feature channels. 
Since the grayscale information of the image is fully 
contained in the “L” channel of the LUV color space, the 
calculation for gradient data only need to be operated on 
this data space.  
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Fig. 5 Base-layer feature construction 

3.3 Extension-layer Feature Construction 
Fig.6 shows the details of extension-layer feature 

design in the PL implementation. The resizing for 
neighboring base-layer feature applied by vertical and 
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horizontal. In order to reduce hardware resource 
consumption, this process is designed as a structure for 
serial computing by module multiplexing. The parameters 
for scaling is stored in ROM as LUT to speed up the 
process. After approximating, a smoothing filter is also 
applied for better performance.  
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Fig. 6 Extension-layer feature construction 

3.4 Objection Detection based on ACF 
Hardware implementation of feature pyramid 

construction generates all feature data needed for 
detection. Following is the objection detection based on 
ACF algorithm, which is implemented on the PS sub-part. 

In the PS design, to achieve object detection with 
Adaboost classifier, a sliding window based processing 
flow is done on each feature layer of the dense feature 
pyramid containing 10 channels. In this work the size of 
sliding window is design to be 64x64 for a better 
performance. The detection result returns the coordinate 
of a bounding box position along with the score. 

4 Evaluation 

4.1 Evaluation Platform 
The evaluation is based on the Xilinx ZYNQ evaluation 

board ZC706. The whole platform is show in Fig.7.  
2 HDMI cards are connected to transfer 640x480 video 

and the detection result is showed on the monitor. An 
UART cable is connected to sending back running 
information. SD-Card is used for loading Adaboost model 
and sending back detection result for further evaluation. 
The evaluation utilizes INRIA data set [9] and the 
evaluation method.  

4.2 Performance 
In this section, the performance of this implementation 

is showed. Since few hardware implementation has been 
published for Fast Feature Pyramid of ACF, we choose 
several HOG-like object detection works for comparison to 
show the performance.

In table 1, the hardware resources and the detection 
performances are list out. The main contribution of this 
work is to construct a dense feature pyramid for object 
detection and save the hardware resource as much as 
possible. Many other works focus on single-scale 
processing, such as [3] [6]. To compare these 
implementations with our work, the hardware reports are 
equally transferred to show how many resources are 
utilized for a single-scale processing.  

In Fig.8, a demo is showed for this system. By 
connecting to the video input from PC (a piece of video 
taken from the road), the result is showed on the screen 
which indicated by red box. 

 
Fig. 7 Hardware test environment 

Demonstration Result Display

FPGA Evaluation Board  
Fig. 8 Real time object detection demonstration 

5 CONCLUSIONS 
This work accelerates dense feature pyramid 

construction and followed by detection flow based on 
ACF. Compared to HOG-like based implementation, the 
average hardware cost is extremely low due to the 
nearby scale approximation and the cascade processing 
on heterogeneous platform ZYNQ. The construction of 
29-scale pyramid achieve 134 fps and obtain good 
detection performance through ACF method. For now, a 
real-time demonstration could be showed and further of 
this design is aiming at the potential cost-sensitive 
application in different scenes. 

Table 1 Hardware performance comparison between this work and HOG-like works 
Publication [3] [4] [5] [6] [7] This work 

Year 2012 2013 2015 2015 2017 2018 
FPGA Cyclone IV Xilinx Virtex5 Xilinx Zynq Xilinx Virtex6 Altera Stratix V Xilinx Zynq 
LUTs 34,403 5,188 21,297 98,642 3529 1237 
Reg. 23,247 5,178 5,942 8694 2657 1638 
DSPs 68 49 4 62 26 8 

Clock Rate[MHz] 40 135 + 270 82.2 70 + 140 142 + 284 27 + 200 
Resolution 800×600 1920×1080 1920×1080 640×480 1920×1080 640×480 

Data rate[fps] 72 64 40 250 68 134
Detection rate 87% 84% 90% 90% 87% 92.4% 

IDW ’19       41



 

   

REFERENCES 
[1] P. DollÁr, R. Appel, S. Belongie, and P. Perona, “Fast 

feature pyramids for object detection,” IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, vol. 36, no. 8, pp. 1532–1545, Aug 2014. 

[2] N. Dalal and B. Triggs, “Histograms of oriented 
gradients for human detection,” 2005 IEEE Computer 
Society Conference on Computer Vision and Pattern 
Recognition (CVPR’05), June 2005, vol. 1, pp. 886–
893 vol. 1. 

[3] K Mizuno, Y Terachi, K Takagi, and S Izumi, 
“Architectural study of hog feature extraction 
processor for real-time object detection,” vol. 52, no. 
11, pp. 197–202, 2012. 

[4] [4] Michael Hahnle, Frerk Saxen, Matthias Hisung, 
Ulrich Brunsmann, and Konrad Doll,   “FPGA-based 
real-time pedestrian detection on high-resolution 
images,” 2013, pp. 629–635. 

[5] Jens Rettkowski, Andrew Boutros, and Diana 

Göhringer, “Real-time  pedestrian  detection  on  a 
XILINX ZYNQ using the HOG algorithm,”  in 
International Conference on Reconfigurable 
Computing and FPGAs, 2016, pp. 1–8. 

[6] Xiaoyin Ma, Walid A. Najjar, and Amit K. Roy-
Chowdhury,    “Evaluation and acceleration of high-
throughput fixed-point object detection on FPGAs,” 
IEEE Transactions on Circuits and Systems for 
Video Technology, vol. 25, no. 6, pp. 1051–1062, 
2015. 

[7] Jan Drre, Dario Paradzik, and Holger Blume, “A hog-
based real-time and multi-scale pedestrian detector 
demonstration system on FPGA,” in ACM/SIGDA 
International Symposium, 2018, pp. 163–172. 

[8] P. DollÁr, S. Belongie, and P. Perona, “The fastest 
pedestrian detector in the west,” in BMVC, 2010. 

[9] “Inria dataset: http://pascal.inrialpes.fr/data/hu 
man/”. 

 
 

42       IDW ’19


