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ABSTRACT
Displays and video compression are key drivers in 

emerging 4K/8K and VR/AR video market. Versatile Video 
Coding (VVC), which is under development as the next 
generation video coding, inevitably changes our society in 
the 2020s. This paper shows VVC key components 
including simplification and improvement aspects and 
shows neural network’s difficulty and significance in 
compressed video.

1 INTRODUCTION
Displays are key devices for video consumptions, 

where image quality is one of the most important issues.
Video codec as well plays a crucial role for this purpose
where traffic bandwidth is also concerned. In July 2020, 
Versatile Video Coding (VVC) is to be standardized, which 
promises to be more powerful than Advanced Video 
Coding (AVC) and High Efficiency Video Coding (HEVC).

After standardization of HEVC ratified in January 2013 
and a success of joint exploration work [1] since October 
2015, a call for proposals was issued in October 2017 
jointly by ITU-T SG16 Q6 (VCEG) and ISO/IEC JTC 1/SC 
29/W G11 (MPEG) [2]. Those call has three categories of 
SDR, HDR and 360 and 33 organization applied for the 
call [3]. Currently, the VVC working draft 6 has been 
developed and VVC test model (VTM) can be found in [4].

AI technologies are rapidly evolving thanks to a large 
amount of data and learning skill’s improvement, which is 
also becoming relevant for image quality. 

Fig. 1 Development of standard video codec

2 Versatile Video Coding
Versatile Video Coding Test Model (VTM), the 

reference software has been developing and  the version 
6 (VTM6) shows the coding gain of 39 % compared to 
HEVC for 4K videos as shown in Fig. 2. The gain is 
based on PSNR and subjective improvement is thought 
to be more than that (it can be up to 65 %).

Fig. 2 Coding performance progress in VTM

2.1 VVC coding tools and its characteristics
VVC has a lot of coding tools with coding performance 

in Table 1 [5]. Here we’d like to discuss what is the point
of these new tools. In our understanding, the 
computation power and better modelling is going on
behind the scene. Also interesting if we categories
coding tools into the following two modelling concepts.

- Human centric model (parametric model)
- Data centric model (learned model)

Fig. 3 and Fig. 4 shows its positioning.

Fig. 3 Categorize of coding tools on modelling
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Table 1 VVC coding tools and its performance 
Y U V

Partition1)

Multi Tree Type 
Partitioning (MTT)

Chroma Separate Tree 0.14% 6.05% 7.57%
Intra Prediction2)

CCLM 0.90% 15.85% 16.95%
MIP 0.27% 0.26% 0.32%

MRLP 0.20% 0.03% -0.02%
ISP 0.13% 0.04% 0.08%

Inter Prediction3-5)

Affine 3) 2.53% 1.83% 1.75%
AMVR 1.05% 1.51% 1.48%
TMVP 1.19% 0.93% 1.03%

SbTMVP 0.43% 0.29% 0.31%
DMVR 4) 0.82% 1.05% 1.07%
BDOF 4) 0.78% 0.24% 0.15%
MMVD 4) 0.58% 0.64% 0.64%
SMVD 4) 0.25% 0.25% 0.23%

CIIP 5) 0.38% 0.08% 0.02%
Triangle 5) 0.35% 0.63% 0.67%

BCW 5) 0.43% 0.53% 0.58%
SBT 0.41% -0.02% 0.07%

Transform6)

Multiple Transform
Selection (MTS)

0.33% 0.51% 0.42%

Low Freq.Non-Separable
Transform (LFNST)

0.79% 0.39% 0.81%

Residual Coding7)

Dependent Quantization
(DQ)

1.71% -0.51% -0.72%

Joint Chroma Residual
(JCR)

0.25% 0.65% 0.72%

Loop filter and Loop process8)

Non-linear Adaptive 
Loop Filter (NALF)

4.91% 4.56% 4.07%

Luma mapping with 
chroma scaling (LMCS)

1.39% -2.83% -2.55%

Entropy Coding 10)

Multi. Prob. CABAC 0.94% 1.00% 0.79%

Fig. 4 Core coding tools in encoding structure

The Human centric model has been used for 
standards with an advantage of less computing 
resources but evolves with the following aspects.
- Multi parametric motion: Affine prediction
- Decoder-side derivation in Chroma Component 

Linear Model (CCLM), Decoder-side Motion Vector 
Refinement (DMVR), Bi-Directional Optical Flow
(BDOF)

- Motion refinement in Merge Mode with motion 
Vector Difference (MMVD), Symmetric Motion
Vector Difference (SMVD), DMVR, and BDOF

- Multi hypothesis in Combined Intra Inter Prediction
(CIIP), Triangle partitioning, Bi-prediction with CU 
Weights (BCW), Multi. Prob. CABAC

- State machine in Dependent Quantization (DQ)
Typical equations are: 

CCLMSamples[x][y] = ( w * pred[x][y] ) >> k + b
CIIPSamples[x][y] = ( w * predIntra[x][y] + (4 - w) *
predInter[x][y] )>>2

where the number of parameters (i.e. w) is 1 or 2.
On the other hand, Data centric model is included in 

the standard for the first time:
- Prediction with learned weights in Matrix based 

Intra Prediction (MIP)
- Transform with learned kernel in Low Frequency 

Non Separable Transform (LFNST)
- Filter with learned weights and clipping values in 

Non-linear Adaptive Loop Filter (NALF)
Typical equations are: 

MIPSamples[x][y]=(( w[ i ][x][y] * p[ i ] + oW) >> sW) 
+ b
LFNSTSamples[x][y] = ( w[ j ][ i ] * coeff[ i ]+64) >> 7
ALFSamples[x][y] = ( w[ i ] * ref[ i ] + 64) >> 7

where i = 0..N-1, N is 4 (MIP), 8 or 16 (LFNST), 12 (ALF)
It is obvious that more params. and computations, 

which become doable in the 2020s would be this basis 
but in details all are with linear equations and the number 
of operations is under roughly 16 multiplies per pixels for
each specific tool. In this sense, video codec evolution is 
linear one. It seems more than 3 weight params. in 
equation needs Data centric model while 1-3 params.
can be specified by Human centric model.

VTM1 started with the most powerful tool MTT where 
recursive multi-type (quad, ternary, binary) tree 
partitioning provides super compact and sufficient
modeling for particular area, VTM 2 adopted basic tools 
CCLM, Adaptive Motion Vector Resolution (AMVR), 
Sub-block Temporal motion vector prediction (SbTMVP), 
and ALF, VTM3 / VTM4 adopted multi. param. Affine, 
Decoder-side motion derivation (BDOF and DMVR),
Multi-hypothesis and IntraBlockCopy (IBC) which are all
powerful but needs special consideration for complexity,
and VTM5 adopted data centric tools of MIP and LFNST
where we human needs to believe and confirm the 
learned models . VTM6 adopted a scalable functionality.
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2.2 VVC development in terms of simplification and 
improvements
Let’s see a set of interesting adopted contributions,

which significantly reduces the complexity or improvement.
First a CCLM simplification [6] replaces two big tables with 
just 48 bits. Specifically, 
A original 16 bit 512 entry table
{65536, 32768, 21845, 16384, 13107, 10922, 9362, 8192, 
7281, 6553, 5957, 5461, 5041, 4681, 4369, 4096, 3855, 
3640…, 128, 128, 128} was replaced with 3 bit 8 entry one

{0,  7,  6,  5,  5,  4,  4,  3,  3, 2,  2,  1,  1,  1,  1,  0}
It’s 99.7 % reduction.

Affine motion (multi-parametric motion) extended
conventional 2 translation params, of e, f to 4 params. [7]
of a=d, b=c, e, f and 6 params. [8] of a, b, c, d, e, f.

vx = a * dx + b * dy + e                                     (eq.1)
vy = c * dx + d * dy + f

where 6 params. are useful to model true motion with
shape changes (different scaling factor in horizontal and 
vertical directions) in contrast to 4 params. for zoom and 
rotation. Another interesting thing is BDOF [9], where 
optical flow (gradient based pixel level motion vector 
information) is utilized to improve prediction in decoder 
side. More than 10 bit support is improved in [10]. At the 
latest Gothenburg meeting, the optical flow based pixel 
level motion refinement is further used in Affine as 
predicted refined optical flow (PROF) [11].

Regarding functionality. In VVC, reference picture 
resampling (RPR) for adaptive resolution change and 
scalable coding / sub-picture, flexible tile[12] and 
wavefront CTU line [13] segmentation for parallel 
processing and region controls / gradual image refresh for 
low delay [14] / wrap-around prediction in Equirectangular 
and loop filter control in arbitrary horizontal/vertical lines
[15] for 360 video projection are introduced.

3 AI era video coding

3.1 Progress of Neural network based video process
In the area of SISR (single image super resolution), 

EDSR [16] and R-CAN [17] shows impressive image 
quality by employing depth to resolution technique [18]
and local / global residuals network with Dense or SE-NET 
For video processing, NN based optical flow [19] is 
included as end-to-end learning [20] based on spatial 
transformer network [21], where image generation and 
optical flow is simultaneously learned, which is then used 
in super-resolution [22] and frame rate up conversion [23]. 
Subjective quality conscious loss functions, such as
perceptual loss [24] and GAN loss [25] becomes common.
Recently video super resolution employs a re-current 
network, which reuses generated HR images with optical 
flow network [26][27]. Degradation process, e.g. blurring 
kernels, motion-blur etc. is addressed in [28] but the 
process has not been fully tested in compressed video 
except for video loop filtering [29][30].

Fig. 5 Progress of Neural network based video process 

3.2 Loop filtering and super resolution for video 
compression

The NN based technologies are promising for its 
power of generating realistic image. There’re two 
difficulties to realize that technology for compressed 
video.

- Computational complexity
- Compression artifacts
At NN based image recognition, the computation 

complexity can be about 224 * 224 * number of weights 
/ 100 [31] while at NN based filtering [32], it becomes
about 3840 * 2160 * number of weights. Thus the ratio is 
224*224/100 : 3840*2160 = 1 : 16500. In other words,
we need 1/10000 network size for image processing to 
achieve the same level real time operation. One possible 
solution is to use really small size network learned for 
each specific bitstream, where only 1440 weight params. 
is used and signalled [33]. This is an incredibly small 
network considering hundreds of millions is ok in super-
resolution research. We’ve also proposed a relatively 
small 7k params. loop filter [35] to JVET with spatial 
separable convolution (3x1 and 1x3 kernels instead of 
3x3 kernels) and SE-Net (Attention) [34] is used.

Current super-resolution techniques might be not so 
effective where known or estimated degradation process 
is a key factor of detailed generation. In video 
compression, degradation process is very different in 
block by blocks and frames by frames.

We employed a frame recurrent video super 
resolution for video compressed image with 3x3 kernels
with 64 channels, which shows progress compared to 
single image super resolution in Fig 6. The benefit of 
multi-frame based super-resolution (FRVSR [26]) is 
confirmed if the compression ratio is not large.

Fig. 6 Video based super resolution (Left: raw video, 
Right: compressed video with qp 22)
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4 CONCLUSIONS
We present core technologies and tool development in

Versatile Video Coding and discuss the state-of-the-art
neural network based video processing with our 
experiment in compressed video.
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