Reduction of Oxide Defects in ZrO₂/Al₂O₃/ZrO₂ Dielectrics by Incorporating Hydrogen Peroxide

Gaeun Lee and Byoungdeog Choi*

Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea

Keywords: high-ĸ, ZrO₂, Al₂O₃, Hydrogen peroxide, solution process

ABSTRACT

Capacitance- and current-voltage characteristics of $ZrO_2/Al_2O_3/ZrO_2$ (ZAZ) capacitors with an addition of hydrogen peroxide (H_2O_2) were identified. From the results, leakage current and interface trap density of the H_2O_2 -doped devices decreased due to reduction of oxygen vacancies in ZAZ layers. H_2O_2 effect on the electrical behaviors was qualitatively analyzed.

1 INTRODUCTION

Recently, solution-processed oxide semiconductor thinfilm-transistors (oxide TFTs) has been extensively studied due to high throughput, homogeneity, excellent compositional control, simple and low cost [1-2]. Some researchers reported oxide TFTs using high-k materials as a gate insulator for achieving low operating voltage and high speed [3]. Among the high-k materials, multi-stacked ZrO₂/Al₂O₃ layers have been attracted considerable attention due to high dielectric constant and low leakage current [4]. However, ZrO₂ has stability issues resulting from the oxygen vacancies and research groups have tried to reduce the oxide defect using high pressure O2 annealing and O₂ plasma treatment [5]. These methods, however, require high cost and additional process. In this study, we introduce ZrO₂/Al₂O₃/ZrO₂ (ZAZ) capacitors which are excellent for achieving high speed, on/offcurrent ratio, and low operating voltage of the TFTs compared with conventional SiO₂ gate dielectric. Capacitance-voltage (C-V) and current density-voltage (J-V) properties of the devices with H₂O₂ incorporation into ZrO₂ layer are discussed.

2 EXPERIMENTAL DETAILS

Figure 1 shows the structures of fabricated device. The ZAZ capacitors were fabricated on p-type silicon substrates which cleaned by RCA method. A 0.2 M Al_2O_3 solution was prepared by dissolving aluminum chloride (AlCl₃) in the mixture of ethylene glycol (C₂H₆O₂) and acetonitrile (CH₃CN). And a 0.3 M ZrO₂ solution was prepared by dissolving zirconium oxychloride octahydrate (ZrOCl₂·8H₂O) in 2-methoxyethanol (C₃H₆O₂). And then, H₂O₂ was incorporated into the pure ZrO₂ solutions. These solutions were stirred at 80 °C at 1000 rpm for 18 and 5

hours, respectively. The prepared solutions were spincoated at 3000 rpm for 30 seconds. After a pre-annealing process at 250 °C for 10 minutes on a hot plate, the post deposition annealing process was performed under the temperature of 600 °C for 1 hour by rapid thermal annealing (RTA) process. The electrode AI was deposited by e-beam evaporator. C-V properties were evaluated at 100 kHz frequency using an Agilent E4980A precision LCR meter and current density-voltage (J-V) characteristics were observed using the Agilent B1500A analyzer.

3 RESULTS and DISCUSSIONS

Figure 2 shows the hysteresis C-V characteristics of ZAZ capacitors measured at 100 kHz. We confirmed that oxide capacitance increased by incorporating H₂O₂ compared to pure ZAZ structure. The values of κ for H₂O₂-incorporated and pure ZAZ films were ~ 30 and ~ 24, respectively. The flat-band voltage shifted to the negative bias direction from 0.59 V to 0.06 V. Also, hysteresis (ΔV_{FB}) of H₂O₂-incorporated ZAZ capacitors has a smaller than the ZAZ capacitors without an incorporated H₂O₂. This implies that H₂O₂ reduced negatively charged oxide traps in the film leads to a decrease in the charge trapping [6]. And the extracted electrical parameters of the devices are summarized in Table 1.

Figure 3 shows the density of the border traps in the fabricated ZAZ capacitor with and without H_2O_2 . The border traps are oxide traps located in near-interfacial. And extracted the density of the border traps according to equation (1) [7-8].

$$N_{bt} = \left(\frac{1}{q}\right) \int |C_{reverse} - C_{forward}| \qquad (1)$$

As shown in Figure 3 and Table 1, N_{bt} drastically decreased from 4.26 x 10¹¹ for pure ZAZ to 2.63 x 10¹⁰ cm⁻² for H₂O₂-incorporated ZAZ. These result from the passivation of near-interface by oxygen atoms due to the H₂O₂ dissociation.

To identify the quality of interface between gate insulator and Si substrate, we calculated interface trap density (D_{it}) by the Terman's method.

$$D_{it} = \frac{C_{ox}}{q^2} \left(\frac{dV_G}{d\phi_s} - 1 \right) - \frac{C_s}{q^2} \qquad (2)$$

The calculated D_{it} using above equation (2) decreased from 2.40 x 10¹¹ for H₂O₂-undoped device to 6.99 x 10¹⁰ cm²eV⁻¹ for H₂O₂-doped device as shown in Figure 4 and Table 1. These results indicated that oxygen atoms in the H₂O₂ reduced oxygen related trap resulting in decrease of D_{it}. Accordingly, we confirmed that incorporating of H₂O₂ to pure ZAZ films leads to an improvement the quality of dielectric films.

Figure 5 shows the J-V characteristics of ZAZ capacitors with and without H_2O_2 . The values of leakage current of ZAZ capacitors evidently decreased from 2.31 x 10^{-7} to 2.07 x 10^{-9} A/cm² by incorporating H_2O_2 . This indicates that an addition of H_2O_2 reduces oxygen vacancies of the film by providing oxygen atoms to the dielectric/Si interface accompanying by reduction of leakage path through the dielectrics.

4 CONCLUSIONS

In this paper, H_2O_2 was employed as a dopant in ZAZ stacks for improving interfacial characteristics and reliability. The incorporation of H_2O_2 into ZAZ reduced leakage current, interface traps, border traps by passivating the defect sites in the ZrO₂ layer. We recommend the H_2O_2 -doped ZAZ layers as a gate insulator for high performance TFTs.

REFERENCES

- S. J. Kim, S. Yoon, and H. J. Kim, "Review of solutionprocessed oxide thin-film transistors," Jpn. J. Appl. Phys., Vol. 53, 02BA02 (2014).
- [2] B. D. Ahn, H. Jeon, J. Sheng, J. Park, and J. Park, "A Review on the recent developments of solution processes for oxide thin film transistors," Semicond. Sci. Technol., Vol. 30, 064001 (2015).
- [3] J. S. Lee, S. Chang, S. Koo, and S. Y. Lee, "High-Performance a-IGZO TFT With ZrO₂ Gate Dielectric Fabricated at Room Temperature," IEEE ELECTRON DEVICE LETTERS., Vol. 31, No. 3, (2010).
- [4] J. Zhang, X. Ding, J. Li, H. Zhang, X. Jiang, and Z. Zhang, "Performance enhancement in InZnO thin-film transistors with compounded ZrO₂-Al₂O₃ nanolaminate as gate insulators," Ceramics International., Vol. 42, pp. 8115-8119 (2016)
- [5] B. S. Yang, S. Park, S. Oh, Y. J. Kim, J. K. Jeong, C. S. Hwang, and H. J. Kim, "Improvement of the photobias stability of the Zn-Sn-O field effect transistors by an ozone treatment," J. Mater. Chem., Vol. 22, pp. 10994-10998 (2012).
- [6] K. Xiong, J. Robertson, and S. J. Clark, "Defect energy states in high-k gate oxides," phys. Stat. sol. (b)., Vol. 243, No. 9, pp. 2071-2080, (2006).
- [7] D. M. Fleetwood, "Border traps' in MOS devices,"

IEEE Transactions on Nuclear Science., Vol. 39, No. 2, pp. 269-271, (1992).

[8] D. M. Fleetwood, P. S. Winokur, R. A. Reber, T. L. Meisenheimer, J. R. Schwank, M. R. Shaneyfelt, and L. C. Riewe, "Effects of oxide traps, interface traps, and "border traps" on metal-oxidesemiconductor devices," Journal of Applied Physics., Vol. 73, 5058 (1993).

Fig. 1 Structures of fabricated ZrO₂/Al₂O₃/ZrO₂ capacitors

Fig. 2 Hysteresis C-V characteristics of solutionprocessed ZrO₂/Al₂O₃/ZrO₂ capacitors with and without H₂O₂.

Fig. 3 Calculated border trap densities for solutionprocessed $ZrO_2/Al_2O_3/ZrO_2$ capacitors with and without H_2O_2

Fig. 4 D_{it} distribution of the pure $ZrO_2/Al_2O_3/ZrO_2$ capacitors and H_2O_2 -doped $ZrO_2/Al_2O_3/ZrO_2$ capacitors

 $ZrO_2/Al_2O_3/ZrO_2$ capacitors with and without H_2O_2

Table. 1 Extracted the value of electrical parameters	5
of ZrO ₂ /Al ₂ O ₃ /ZrO ₂ capacitors	

	ZAZ	ZAZ+H ₂ O ₂
Cox (pF)	134	168
Dielectric constant (κ)	23.57	29.55
$\Delta V_{FB}(V)$	-0.17	-0.01
D _{it} (cm ⁻² eV ⁻¹)	2.40 x 10 ¹¹	6.99 x 10 ¹⁰
N _{bt} (cm ⁻²)	4.26 x 10 ¹¹	2.63 x 10 ¹⁰
Leakage current (A/cm ²) (@ -1 V)	2.31 x 10 ⁻⁷	2.07 x 10 ⁻⁹