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ABSTRACT 

In this study, dynamic characteristics between image 
motion and severity of visually induced motion sickness 
(VIMS) was modeled as a Hammerstein model, which 
consists of a static nonlinear function followed by a linear 
system. The results indicate the change in subjective 
VIMS score may be estimated from image motions. 

1 INTRODUCTION 
Recent rapid development in display technologies has 

exposed many people to new display environments such 
as widescreen TV sets with high resolution and head 
mounted displays. However, there are concerns about 
adverse effects of visual stimulation on humans. The 
International Organization for Standardization (ISO) has 
publicized the document of recommendations for reducing 
the potential visual discomfort and visual fatigue 
experienced during viewing of stereoscopic images under 
defined viewing conditions (ISO 9241-392:2015).  

Visually induced motion sickness (VIMS) is also 
encountered during watching a moving image displayed 
on a wide field display or screen [1]-[3]. In order to reduce 
the risks for VIMS, it is important to investigate the 
relationship between VIMS and each component of video 
motion such as transition and roll. Ujike et al. reported the 
static effects of global motion (GM) which is consisted by 
roll, pitch and yaw [4]. Because the effects of visual stimuli 
have dynamic response such as accumulation and 
recovery, it is desirable to reveal the dynamic response 
from exposure of motion image to change in severity of 
VIMS. Our group has reported that time and quantitative 
resolution of subjective score of the severity can be 
improved by using physiological indices [5]. Furthermore, 
it has also been indicated that a simple linear model can 
represent relatively well the dynamic relationship between 
the continuous change in a subjective score and the GM 
[6]. However, the model does not contain nonlinear 
characteristics such as dead band. The aim of this study 
is to model the dynamic relationship between GM vectors 
(GMV) of video and severity of VIMS by a nonlinear 
dynamical system. 

2 METHODS 

2.1 Experiments 
Fig. 1 shows the schematic illustration of the 

experiment carried out in this study. The subjects 
watched the video image displayed by a LC display (GD-
463D10; Victor Company of Japan, Limited).  A size and 
resolution of display ware 46inces and 1920x1080, 
respectively. The viewing distance was 0.86m which is 
1.5 times as height as the display. The illumination in the 
room was 10 lx. 

Electrocardiogram (ECG), plethysmogram (PPG) at 
left finger and continuous blood pressure at radial artery 
(RBP) were recorded with a sampling frequency of 1 kHz 
using a 16-bit A/D converter (MP150; BIOPAC System 
Inc.) while watching the video. The subjective score (SS) 
of 4-level-graded (0 to 3) severity of VIMS was also 
recorded every 30s. Before and after the exposure, each 
subject filled out the Simulator Sickness Questionnaire 
(SSQ) [7]. 

We used two video images. One consisted of 5min 
still image, 8min CG video image including various 
motion and 2min still image (movie A) and the other 
consisted of same setup with different motion 
components (movie B).  The subjects watched the movie 
A or the both. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Schematic illustration of the experiment 
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A total of 20 subjects (10 males, 10 females, 
21.0±0.7years) participated in the study. After the approval 
of the ethical committee of Fukushima University, informed 
consent was obtained from all the participants before the 
experiment.  

2.2 Preprocessing of Physiological Data and  
Estimation of Subjective Score 

Instantaneous heart rate (HR) was calculated from the 
reciprocal of time interval between R-wave on the ECG 
signal. Arterial pulse wave transmission time (PTT) was 
defined as the time interval from the peak time of the ECG 
R-wave to the point at which the PPG signal begins to rise. 
After obtaining beat to beat data of HR, mean blood 
pressure (BP) and PTT, they were interpolated by cubic 
spline functions to be time-continuous functions, and were 
re-sampled every 0.2s. 

In order to improve resolution of measured subjective 
score for system identification, the multiple regression 
equation which estimated subjective score from 
physiological indices was calculated at every subject. A 
forward stepwise linear regression was used to determine 
the most promising independent variables for the model 
identification. The candidates of explanatory variables 
were following 9 parameters.  

 Mean heart rate (HRm) 
 Mean blood pressure (BPm) 
 Mean value of pulse wave transmission time 

(PTTm)  
 Coefficient of variation of R-R intervals (CVRR) 
 Low frequency power of heart rate variability (LF)  
 High-frequency power of heart rate variability (HF) 
 LF/HF 
 Maximum cross-correlation coefficient between 

heart rate and blood pressure (ρmax)[8] 
 Auto-regression coefficient of the linear model 

from RBP to PPG (a1). 
These indices were calculated with the time window of 

30s shifted every 10s.  

2.3 System Identification between global motion 
vectors and VIMS severity 

The aim of this study is to model the dynamic 
relationship between GMVs of video and severity of VIMS. 
In order to quantify the GMVs of the movies, root mean 
squared (RMS) values of image rotation speed around 
three axis of head coordinate system were calculated at 
every 10s [9]. 

In this study, the model which represents the relation 
between GMVs and estimated subjective score (SS) was 
identified as following Hammerstein model [10][11], 

(1) 

where, k denotes the discrete-time index, Bi(q−1) and 
Ai(q−1) are polynomials in shift operator q−1, xi are RMS of 
GMVs representing pan, tilt and roll, Bi(q-1)/Ai(q-1) 

represents linear transfer function, fi is static nonlinear 
function and e(k) is the residue. In this study, the 
following sigmoid function is used as nonlinear function 
in order to represent dead band and saturation 
characteristics. 

(2) 

The model parameter was estimated by using iterative 
search algorithms to minimize the loss function. 

3 RESULTS AND DISCUTTIONS 
The data sets of six participants whose subjective 

scores were always 0 and two participants whose 
physiological indices could not be calculated because of 
severe disturbance were excluded from analysis.  Fig. 2 
shows the relationship between mean values of 
measured SS and those of estimated values using 
multiple regression equations for movie A. The root 
mean square error was 0.20 and correlation coefficient 
R was 0.83. This result indicated that the change in SS 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Relationship between mean values of 

measured subjective score and estimated 
values via physiological indices (movie A) 

 
 
 
 
 
 
 
 

Fig. 3 SS estimation result via global motion 
vector (movie A) 

 
 
 
 
 
 
 
 

Fig. 4 SS estimation result via global motion 
vector of movie B using the same model as 
Fig. 3 

 

SS  (measured)

SS
  (

es
tim

at
ed

)

N=12

R=0.83

2.0

1.5

1.0

0.5

0.0
0.0       0.5       1.0       1.5      2.0

300 400 500 600 700 800 900
0

1

3

Time [s]

SS

2
SS by physiol.
SS by GMV

300 400 500 600 700 800 900
0

1

3

Time [s]

SS

2

measured SS
SS by GMV

1153       IDW ’19



 

   

can be estimated from physiological indices though the 
types of explanatory variables of the multiple regression 
model had individual differences. Therefore, a time series 
of SS was able to be obtained with higher time and 
quantitative resolution than a measured score. 

Fig. 3 shows the estimation result for mean change in 
continuous subjective score by identified Hammerstein 
model. The correlation coefficient was 0.93. Fig.4 shows 
the comparison of the change in measured subjective 
score in movie B and the output of the model which was 
identified using the result of movie A with the global motion 
vector of movie B as input. The change in SS can be 
simulated by only GMV of viewing image though 
underestimation occurs at the latter part. This result may 
indicate that the proposed Hammerstein nonlinear model 
can roughly estimate the change in degree of VIMS from 
global motion vectors of a video image. Furthermore, the 
sigmoid function which is static nonlinear of the model may 
able to represent the dead band of each motion 
component. In order to identify the model parameters of 
the static nonlinear part, however, it is necessary that the 
viewing image for experiment has sufficiently wide range 
of GM amplitude. 

4 CONCLUSION 
In this study, a model based approach to evaluate the 

effect of VIMS induced by actual motion image, which 
includes various and complex motion components, was 
introduced. First, the continuous change in the subjective 
score of the degree of VIMS was obtained from the 
multiple regression equation consisting of physiological 
indices. Second, the relationship between the subjective 
score and video global motion was identified as a 
Hammerstein model which consist of a static nonlinear 
function followed by a linear system. The approach has 
following characteristics: a) the continuous change in the 
subjective score of VIMS is obtained with higher time and 
quantitative resolution than the intermittently measured 
subjective score, b) the model can represent the dynamic 
behavior of VIMS such as accumulation and recovery, c) 
the nonlinear part of the model can represent gain 
characteristics of the influence of each motion component 
on VIMS with nonlinearity such as dead band and 
saturation. The results indicate that model can effectively 
represent the change in degree of VIMS from GMV. In 
future works, much more data sets from experiments using 
motion image having a wide range of amplitude and 
frequency of motion are necessary to obtain a more 
accurate model. 
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