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ABSTRACT

This paper summarizes our recent works on displaying
dense light fields from real scenes on a light-field display.
We developed processing workflows for various input
modalities, including multi-view cameras, plenoptic
cameras, focal stacks, and coded-aperture cameras. We
also indicate a direction toward a unified framework for
various modalities.

1 INTRODUCTION

True 3-D experience can be achieved by reproducing a
dense light field of a target scene, which provides not only
binocular depth perception but also natural motion parallax
in response to the head motion. A light field is usually
represented as a set of dense multi-view images, and thus,
a light-field display should be capable of emitting many
views into the corresponding directions simultaneously. To
develop such displays, several architectures using
parallax barriers, lenticular lenses, and rear projections
have been proposed. Among them, we focus on a newly
emerging architecture using a stack of a few semi-
transparent layers [1-3]. This architecture enables us to
display many views simultaneously without the resolution
for each view being sacrificed. In other words, many views
can be represented as a set of several layers in a
compressive manner. Specifically, we followed the design
of “tensor display” [3] shown in Fig. 1, and developed a
prototype using three liquid crystal display (LCD) panels
and a backlight.

Compared to the architecture design, less attention has
been focused on the issue of how 3-D contents for such
displays are created. In particular, when we aim to display
a real scene, we need to prepare a light field of that scene
in a suitable format for the display’s architecture. This
paper summarizes our recent works [4-8] on this issue. As
shown in Fig. 2, we developed processing workflows for
our prototype light-field display from various input
modalities, including multi-view cameras, plenoptic
cameras, focal stacks, and coded-aperture cameras. This
paper provides an overview on the difference among these
input modalities, and indicates a direction toward a unified
framework for different modalities that is constructed on
deep neural networks.
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L(s, t,x,y)

Figure 1: Light-field display with a stack of three
semi-transparent layers. Multi-view images are
associated with corresponding light rays.

2 Layered Light-Field Display

As shown in Fig. 1, two or three light attenuating
layers such as liquid crystal display (LCD) panels are
stacked in front of a backlight. With three layers, each of
the outgoing light rays can be described as

1
L(s,t,x,y) =1L l_[ T,(x +ns,y +nt). (1)

n=-1
Here, T,,(x,y) € T denotes the transmittance of the n-th
layer where n=-1,0,1 are assigned to the rear, middle,
and front layers, respectively, and L is the luminance of
a uniform backlight. The outgoing direction is
represented by (s, t).

To display a desired 3-D content on this display, we
first need to prepare light field data consisting of a set of
multi-view images, [;;(x,y), where (i,j) denote the
horizontal and vertical position of a viewpoint. We set the
central viewpoint to (0,0) without loss of generality.
These images are associated with the views observed
from different directions. More specifically, each image
corresponds to the target light field as

LG j,xy) = Lj(xy). (2
The transmittance patterns for the layers T,(x,y) €T
are optimized so as to satisfy the above condition as
much as possible. This optimization is described as
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Figure 2: Process workflow from various input modalities to layered light-field display.

T* = argmin E(T) (3)

2

1
L@y = [ [ e+ niy+np|| @

n=-1

E(T) = Z

L1x.y
This optimization is formulated as a problem of non-
negative factorization (NTF), and was solved by analytical
methods based on iteration-based multiplicative update
rules. More recently, we developed learning-based
solutions using convolutional neural networks (CNNs) [7,8]
as will be mentioned later.

3 Workflows for Various Input Modalities

As shown in Fig. 2, we established processing
workflows for our prototype light-field display from various
input modalities, including multi-view cameras, plenoptic
cameras, focal stacks, and coded-aperture cameras.

3.1 Multi-view camera [4,5]

As a straight-forward approach, we first used a multi-
view camera (ViewPLUS ProFUSION 25) as an input
modality for our prototype display [4,5]. The camera had
25 viewpoints compactly arranged in a 5 x 5 array. The
viewpoint intervals were 12 mm, which turned out to be too
large for our purpose in most practical setups; we needed
a denser light field to display the content with high quality.
Specifically, disparities among the neighboring viewpoints
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should be limited within +1 pixels. To satisfy this
requirement, we used a view interpolation (virtual view
synthesis) method. For example, we interpolated
(densify) the original 5 x 5 viewpoints into 17 x 17
viewpoints in accordance with the disparity range of a
target scene. Then, the interpolated multi-view images
were fed to the iteration-based algorithm to produce the
optimized layer patterns, T,,(x,y) € 7. We verified that
the light field interpolated in this manner led to better
visual quality than the case of using the original light field
without interpolation.

3.2 Plenoptic camera [5]

A plenoptic camera, such as a Lytro-lllum, can also be
used as an input modality [5]. Due to a micro-lens array
attached on the imaging sensor, this camera can capture
a light field (consisting of, e.g., 15 x 15 viewpoints) with
a single shot, but the spatial resolution for each viewpoint
image is reduced in return. The viewpoint intervals were
sufficiently small due to the small aperture of the camera
device. Therefore, no viewpoint interpolation was
necessary; the obtained multi-view images are directly
fed to the iterative algorithm to produce the optimized
layer patterns, T,(x,y) €T . On the contrary, the
disparity range was more likely to be too small. The
amount of disparities was directly related to the strength
of 3-D sensation we perceived from the light-field display.
Therefore, we needed to carefully configure the target



scene so as to produce sufficiently large disparities among
the viewpoints. By doing so, we achieved visually-
compelling results on our prototype display using inputs
from a Lytro lllum camera.

3.3 Focal Stack [6]

The modalities mentioned so far requires specialized
hardware devices for light field acquisition. We also
investigated another modality that can be implemented
with an ordinary camera: a focal stack, which is a set of
differently focused images taken from the same viewpoint
[6]. The idea of replacing a light field with a focal stack
aligns with the fact that a focal stack can contain most of
the information of the original light field in a compressive
manner. Specifically, we need three images for the three
layer-patterns, each of which focused at the depth of each
layer. An image focused at the n-th layer is approximately
represented as

Jn@y) = ) Iy —niy—n) ne(-101}. )
Lj

The layer patterns, T,(x,y) € T, should be derived
from these three images. We modified the iteration-based
optimization algorithm through approximations. More
specifically, the original algorithm requires each view of
the original light field, I; ;(x, y). In contrast, our modified
algorithm refers only to the focal stack consisting of
J.(x,y). We evaluated the light fields displayed with our
modified algorithm, and verified that the quality was
almost comparable to the case with the original algorithm.

Using a focal stack as the input eliminates the need of
specialized hardware. It also leads to a significant
reduction of the amount of input data; we need only three
differently-focused images instead of dozens of images
taken from different viewpoints. Moreover, it can be
considered as a desirable process flow: a direct
conversion from a compressed representation (a focal
stack) to another compressive representation (a set of
layer patterns).

3.4 Coded-Aperture Camera [7]

The final modality mentioned in this paper is a coded-
aperture camera. This type of cameras is used for depth
estimation, focus synthesis, and compressive light-field
acquisition. For the purpose of compressive light-field
acquisition, each viewpoint is associated with a point on
the aperture plane, which is coded using a semi-
transparent mask pattern. Using an aperture pattern
a,(i,)) for the n-th acquisition, an image acquired from
this camera is written as

@) =Y anli Dl @) . 6
LJ
From several images, consisting of J,,(x, y) acquired with
different coding patterns a,(i,j), the original light field,

consisting of /; ;(x, y), is computationally reconstructed.
As shown in [9], we need only 2 to 4 acquired images to
reconstruct the original light field with 5 x 5 or 8 x 8 views,
where substantial compression was achieved in light-
field acquisition. The key to this success was the use of
deep neural networks. More specifically, we trained a
convolutional neural network (CNN) using a massive
amount of light field data so as to reconstruct the original
light field (I;;(x,y)) from several acquired images
Un(x,¥))-

Extending the work in [9], we established a process
flow from a coded aperture camera to a layered light-field
display [7]. This extension is simple; the network’s output
changed from a light field to a set of layer patterns. The
extended network can be trained in the same manner as
the original, because using Eq. (1), the layer patterns are
converted into the corresponding light field. In other
words, the left-hand side of Eq. (4) was used as the loss
function for each light-field sample during the training
procedure. Once the training is finished, only a single
forward inference process on the network is necessary
to obtain a set of layer patterns from a set of acquired
images. We validated this process flow using a real
coded-aperture camera and our prototype display.

4 Towards Unified Framework [8]

The process flow mentioned in Section 3.4 includes
an important suggestion; deep neural networks are
useful for obtaining a set of layer patterns for a target
light field. Aligned with this suggestion, we revealed that
CNN-based methods can be used as the substitutes for
the analytical iteration-based methods [8].

A CNN-based method is easily composed as shown in
Fig. 3; we can use arbitrary architecture as far as the
input and output are a light field and the corresponding
set of layer patterns, respectively. In the training
procedure, the left-hand side of Eq. (4) was used as the
loss function for each training sample. Once the training
is finished, a set of layer patterns is obtained by giving a
light field as an input to the trained network.

We demonstrated that CNN-based methods vyield
comparable quality to the analytical iteration-based
methods. An obvious advantage of CNN-based methods
is the computational speed as shown in Fig. 4; although
the training procedure takes significant time, a forward
inference process on the trained network is usually very
fast (e.g., several hundreds of milliseconds for typical
setups). In contrast, analytical methods gradually
optimize a set of layer patterns for a given light field in
an iterative manner, which requires several seconds until
convergence.

Moreover, CNN-based methods have the potential of
further generalization to various input modalities. As
mentioned so far, the input to the network can be either
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a light field (as in [8]) or a set of images acquired using a
coded-aperture camera (as in [7]). Furthermore, the input
can be of any modality; it can be a set of sparse multi-view
images (as in [4]) or a focal stack with arbitrary number of

differently-focused images (a more general setup than [6]).

In any case, the output is a set of layer patterns used for a
layered light-field display, and the training loss is defined
to evaluate the accuracy of the light field reconstructed
from (displayed with) the layer patterns. The network is
trained to learn the mapping between the input data given
in a specific modality and a set of layer patterns that can
accurately reproduce the target light field. We can use any
network architecture, but not so much modification would
be required to handle the difference of the input modalities.
To conclude, it is expected that a unified framework for
various input modalities can be constructed on deep
neural networks.

5 Conclusions

This paper described our recent works on displaying
dense light fields from real scenes on a layered light-field
display. We developed several processing workflows
corresponding to various input modalities, including multi-
view cameras, plenoptic cameras, focal stacks, and
coded-aperture cameras. We also demonstrated that
CNN-based methods can be used to derive a set of layer
patterns for the target light field, as the substitutes for
analytical iteration-based methods. We finally indicate a
direction toward a unified framework for various input
modalities that is constructed on deep neural networks.
Please visit our website' for more results and software.
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