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ABSTRACT 

 In this study, we simulated an image recognition 
system using visual cortex layers and xbar memristor as a 
full connection layer. The simulation results show that the 
best accuracy was 69% when the MNIST datasets were 
used, and it was 23% when the CIFAR-10 datasets were 
used. 

1 INTRODUCTION 
In the existing Neumann computers [1], the memory 

unit and the arithmetic unit are completely separated, and 
the performance has been improved by the development 
of the semiconductor miniaturization technology. However, 
because of the end of Moore's law [2], it is considered that 
there will be no further improvement in semiconductor 
miniaturization technology in the future, and the 
performance improvement of the Neumann computers will 
slow down. According to recent artificial intelligence (AI) 
[3] research, it has been found that AI calculation works if 
it has a calculation accuracy of about 8 bits[4]. Therefore, 
elements using various materials have been devised every 
year. For example, HfOx is used in [5] and memristive 
magnetic tunnel junction are used in [6].  

A model called a neural network that mimics the neural 
circuit of the brain is often used for AI, and recently, 
research on neuromorphic computers that implement the 
neural network at the hardware level has been conducted. 
It is considered that the neuromorphic computers can 
operate at a low power consumption with significantly 
higher calculation efficiency than the conventional 
Neumann computers. Neuromorphic computers include 
those that use digital elements such as CMOS [7]–[9] and 
those that use analog elements [10][11]. 

A convolutional neural network (CNN) [12] is a type of 
neural network mainly used for image recognition, and its 
prototype can be found in Neocognitron [13], which was 
devised based on the neurophysiological knowledge of the 
visual cortex (V1) of the brains of organisms. Neocognitron 
is a neural network in which convolutional layers 
corresponding to simple cells for feature extraction and 
pooling layers corresponding to complex cells having a 
function of allowing positional displacement are alternately 
arranged in a hierarchical manner. In Neocognition, 
learning was done by self-organization, but in CNN, 

learning was done by backpropagation. However, 
learning by backpropagation requires a huge amount of 
calculation. In the human primary visual cortex, edge 
detection, contour coordination, and slit detection are 
possible [14]. 

In this study, we fixed the weight of the kernel in the 
feature extraction layer, eliminated the need for kernel 
learning, and aimed at a structure that can be 
implemented in hardware. In addition, we have 
developed a learning algorithm that utilizes the electrical 
characteristics of oxide semiconductors for the full 
connection (FC) layer. Then, the behavior was simulated 
by using the developed algorithm for actual image 
recognition. The detailed information on the prior 
precondition behind this study was also published 
elsewhere [15]–[17]. In particular, in this paper, we will 
show the simulation results of the best accuracy when 
the MNIST datasets and the CIFAR-10 datasets are 
used. Moreover, we will show the dependency of the 
training rate and deviation of initial resistance value of 
the oxide semiconductor. 

2 EXPERIMENT 

2.1 Architecture 
Normally, a CNN is used for image recognition, and it 

has the structure shown in Fig.1. However, because the 
purpose of this research is to implement whole system 
as a hardware, image recognition was performed by 
replacing each layer of the CNN with the proposed 
method as shown in Fig.2. Some letter and image 
patterns are inputted to these architectures. 

2.2 Visual Cortex 
Usually, the CNN based on the structure shown in 

Fig.1 is often used for image recognition. Here, it is 
necessary to train the kernel weights of the convolutional 
layer for extracting the feature quantity. However, 
training kernel weights requires a large amount of 
calculation and is expensive to optimize. Therefore, by 
creating layers that mimic the structure of the primary 
visual cortex, as shown in Fig.2, we reduced the learning 
cost and made it possible to implement them in hardware. 
In these layers, edge detection and slit detection are 
performed. In the edge detection, the edges were 
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detected by comparing the Sum of Absolute Difference 
(SAD) value in four directions with the threshold in a 3x3 
area. In the slit detection, a kernel as shown in Fig.3 was 
used so that the feature of the line angle could be detected 
at every 22.5 degree. Fig.4 show the detected degrees 
using the slit detector. 

 
Fig. 1 Conventional CNN architecture 

 
Fig. 2 Proposed architecture with implementation of the 

slit detector and local autonomous learning 

 
Fig. 3 Implemented slit type for every 22.5 degree 

 
Fig. 4 Detected degree 

2.3 Full Connection Layer 
Neural networks are often used also for the FC layers 

of ordinary CNNs, and backpropagation is often used for 
training. However, since the oxide semiconductor 
memristor is used as the FC layer in this study, 
backpropagation cannot be used because extremely 
complicated circuits or systems are needed to control the 
electrical characteristics. Therefore, we have developed a 
training algorithm that does not use backpropagation. The 
oxide semiconductor memristor is characterized in that its 
resistance value changes according to the number of 
times the voltage is applied [18], and the structure is 
shown in Fig.5. Here, a thin film of an oxide semiconductor 
is sandwiched between the top electrode and the bottom 
electrode. The voltage is applied between the top 

electrode and the bottom electrode, and the electric 
current flows through the oxide semiconductor. 
Furthermore, that the characteristics is shown in Fig.6. 
Here, it is modeled that the electric current gradually 
increases by applying the voltage. In addition, the 
structure is a simple xbar like that shown in Fig.7, so high 
integration is possible. In our research, we assumed to 
use a memristor using Ga-Sn-O. Here, the top and 
bottom electrodes are patterned to multiple buslines, and 
the oxide semiconductor memristors are formed at the 
cross points of these buslines. 

In the training, the resistance value at the designated 
place is changed by inputting the training data 
corresponding the image patterns from one electrode 
and label data from the opposite electrode, as shown in 
Fig.5 and Fig.7. Here, the training rate is defined as a 
rate of the decrease of the resistance per voltage 
application for the initial resistance. In the simulation, the 
deviation of the initial resistance value of the oxide 
semiconductor was changed from 0% to 40%, the 
learning rate was changed from 10-1 to 10-7, and the 
influence on the recognition accuracy was investigated. 
Moreover, we investigated the effect when the number 
of the electrodes for inputting label data changes. 

 
Fig. 5 Cross sectional structure of the oxide 

semiconductor memristors 

 
Fig. 6 Simulation model of memoristor characteristics 

 
Fig. 7 Xbar shape for the oxide semiconductor 

memristors 
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3 RESULTS and DISCUSSION 

3.1 MNIST datasets 
Dependence of the recognition accuracy on the training 

rate and resistance deviation for MNIST datasets is shown 
in Fig.8. It was found that the larger the deviation in 
resistance value, the lower the recognition accuracy. 
When the recognition accuracy was maximized, the 
deviation in the initial resistance value was 0%, the training 
rate was 10-7, and the recognition accuracy was 69%. 
When the deviation of the initial resistance value was 0%, 
the recognition rate was high for the training rate from 10-

7 to 10-4, but for the training rate above 10-3 the recognition 
accuracy decreased. It is considered that the reason is that 
if the training rate is too large, the amount of change in the 
resistance value of the frequently learned part is too large 
and the influence of other parts is ignored. Moreover, when 
the resistance variation is from 10% to 40%, the 
recognition accuracy was maximized at the training rate of 
10-3 or 10-4. It is considered that the reason is that if the 
training rate is too small, the deviation in the initial 
resistance value cannot be overcome by training. y g

 
Fig. 8 Dependence of the recognition accuracy on the 

training rate and resistance deviation for MNIST datasets 

3.2 CIFAR-10 datasets 
Dependence of the recognition accuracy on the training 

rate and resistance deviation for CIFAR-10 datasets is 
shown in Fig.9. Similar to the dependence for MNIST, it 
was found that the larger the deviation in resistance value, 
the lower the recognition accuracy. When the recognition 
accuracy became the maximum, the deviation of the initial 
resistance value was 0%, the training rate was 10-7, and 
the recognition accuracy was 23%. When the deviation of 
the initial resistance value was 0%, the recognition rate 
was high for the training rate from 10-7 to 10-3, but for the 
training rate above 10-2 the recognition accuracy 
decreased. It is considered that the reason is that if the 
training rate is too large, the amount of change in the 
resistance value of the frequently learned part is too large 
and the influence of other parts is ignored. Moreover, when 
the resistance variation is from 10% to 40%, the 
recognition accuracy was maximized at the training rate of 
10-3. It is considered that the reason is that if the training 

rate is too small, the deviation in the initial resistance 
value cannot be overcome by training. These 
discussions for CIFAR-10 are roughly the same as those 
for MINST. In addition, the training rate when the 
recognition accuracy is maximum in Fig.8 and Fig.9 has 
different values because the image size, data size, etc. 
are different between MINST and CIFAR-10 datasets. 
From these results, it was found that it is necessary to 
find a suitable training rate for each data set.  

 
Fig. 9 Dependence of the recognition accuracy on the 

training rate and resistance deviation for CIFAR-10 
datasets  

3.3 Label Input Method 
Incidentally, the abovementioned results were 

obtained by applying a label input to a bar of the xbar 
shape. In addition to the abovementioned results, the 
other results were also obtained by applying a label input 
to some other bars for MINIST datasets as shown in 
Fig.10. From these results, it was found that the 
recognition accuracy for "a bar and one randomly-
selected bar" and "a bar and two randomly-selected 
bars" is the same as that for a bar. The reason may be 
that randomly-selected bars do not give bias during 
training. Moreover, it was also found that the recognition 
accuracy for "a bar and one neighboring bar" and "a bar 
and two neighboring bars" has less recognition accuracy. 
It is considered that the reason is that training is biased 
because correct and incorrect labels are used at the 
same time for each learning.  

 
Fig.  10 Accuracy of MNIST dataset with changing the 

number of trained bar 
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4 CONCLUSIONS 
We investigated image recognition using xbar 

memristor with implementation of slit detection and local 
autonomous learning. In this image recognition program, 
the edge detection layer and the slit detection layer, which 
have the same function as the primary visual cortex for 
feature extraction and do not require training, are used. 
Moreover, we developed a training algorithm when using 
a device made of an oxide semiconductor memristor in the 
shape of xbar for AI training. The developed training 
algorithm was implemented in an image recognition 
program to simulate the behavior. In the simulation, the 
deviation in the initial resistance value of the oxide 
semiconductor and the training rate were changed. The 
recognition accuracy was up to 69% when using the 
MNIST datasets and up to 23% when using the CIFAR-10 
datasets. In addition, it was found that the training rate 
when the recognition accuracy was maximized was 
different when using different datasets, so it is necessary 
to use the training rate suitable for each dataset. 
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