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ABSTRACT 

Electroholography is gaining popularity as an ideal 
three-dimensional display technology, but it requires high-
performance computers for practical use. In this paper, we 
used the Hilbert transform to build a special-purpose 
computer for phase-only electroholography. As a result, 
we succeeded in speeding up calculation 400 times faster 
than commercial CPUs. 

1 Introduction 
Electroholography [1] has been gaining attention as an 

ideal three-dimensional (3D) display technology because 
it can reproduce all the depth cues. Thus, 
electroholography can overcome 3D sickness, also known 
as vergence-accommodation conflict (VAC) [2], which is 
caused by the lack of depth cues in traditional stereoscopic 
displays (such as head-mounted displays). Computer-
generated holograms (CGHs), which are recorded 
interference patterns with three-dimensional information, 
are used in electroholography. CGH is generated by 
computer calculation, and it is necessary to develop a 
system capable of rapidly computing a large amount of 3D 
information [3]. 

This study developed special-purpose computers for 
electroholography using field-programmable gate arrays 
(FPGAs) [4,5] to reduce computation time. CGH is 
classified into two types: amplitude and phase. The 
amplitude type has a lower computational cost than the 
phase type and can be computed faster. On the contrary, 
although the computational cost of the phase type is high, 
it can produce brighter and better-reproduced images than 
the amplitude type [6]. We have been developing 
specialized computers for both methods. However, 
previous work discovered that phase-type special-purpose 
computers have nearly half the computational 
performance of amplitude types due to the increased size 
of the required circuits [4,5]. 

This paper used the Hilbert transform to create a phase-
type CGH calculation circuit [7]. The scale of the circuit 
was greatly reduced using the Hilbert transform, and we 
were able to create a special-purpose computer with 
~20,000 parallel cores. The performance is 400 times 

faster than that of a CPU (Intel Core i9-9900K) and 8.5 
times faster than that of a GPU (NVIDIA RTX 2080 Ti). 
We also describe the architecture and computational 
performance of the developed computer.  

2 Calculation Method 
We used CGH based on point cloud 3D models. In M 

points cloud, the formula under the condition of zj ≫
 xj,  yj is expressed as 

𝑢𝑐(𝑥𝑎, 𝑦𝑎) = ∑ 𝐴𝑗 exp(𝑖2πθ𝑎𝑗)
𝑀

𝑗=1

, (1) 

θ𝑎𝑗 = ρ𝑗(𝑥𝑎𝑗
2 + 𝑦𝑎𝑗

2 ), (2) 
where ρ𝑗 = 1/(2λ|𝑧𝑗|), 𝑥𝑎𝑗 = 𝑥𝑎 − 𝑥𝑗 , 𝑦𝑎𝑗 = 𝑦𝑎 − 𝑦𝑗 , 𝑥𝑎 , 
𝑦𝑎  is coordinates on the CGH, 𝑥𝑗, 𝑦𝑗, 𝑧𝑗  represents the 
coordinates of the point cloud. 𝐴𝑗  is the amplitude 
intensity of the point cloud (fixed to 1), and λ  is the 
reference light’s wavelength. 

The CGH obtained using Eq. (1) and Eq (2) is called 
a complex hologram. Complex holograms cannot be 
displayed at once in commercial displays but must be 
displayed with phase or amplitude distributions selected. 

In the case of phase-type holograms, the phase 
distribution is extracted using the following equation: 

𝑢𝑝(𝑥𝑎, 𝑦𝑎) = tan−1 Im{𝑢𝑐}
Re{𝑢𝑐}, (3) 

where Re{𝑢𝑐} and Im{𝑢𝑐} are functions that extract the 
real and imaginary parts from the complex distribution, 
respectively.  

Amplitude holograms can be created by extracting the 
real part using Re{uc} . However, due to the 
computational cost, it can be calculated directly using 
Eq. (4) instead of Eq. (1), Eq. (2) and Re{uc}. 

𝑢𝑎(𝑥𝑎, 𝑦𝑎) = ∑ 𝐴𝑗 cos[2πθ𝑎𝑗]
𝑀

𝑗=1

. (4) 

2.1 Recurrence Relation Algorithm 
There is a simple calculation method for FPGA 

implementation named recurrence relation algorithm [8]. 
Here we defined 

𝛤j =
1

λzj
= 2ρj, (5) 

𝛥0𝑗 = 𝜌𝑗{2(𝑥0 − 𝑥𝑗) + 1}. (6) 
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In the recurrence relation algorithm, initially Eq. (2) as 𝜃0𝑗 
is calculated. In the n-th 𝜃𝑛𝑗 in the x-axis direction, 𝜃𝑛𝑗 is 
formulated with the recurrence relation algorithm as 
follows: 

𝜃𝑛𝑗 = 𝜃(𝑛−1)𝑗 + 𝛥(𝑛−1)𝑗. (7) 
Also, we update ∆0𝑗 value using the following equation: 

𝛥𝑛𝑗 = 𝛥(𝑛−1)𝑗 + 𝛤𝑗. (8) 
We can calculate 𝜃𝑛𝑗 by simply repeating simple Eq. (7) 
and Eq.  (8). 

2.2 Hilbert Transform 
The Hilbert transform using the 1D Fast Fourier 

Transform (FFT) is expressed as: 
ℎ̂(𝑥) = FFT−1[FFT[𝑢𝑎(𝑥)]𝐻(𝑓)], (9) 

H(𝑓) = {
1 (𝑓 = 0)

1/2 (𝑓 < 𝑊)
0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

 (10) 

FFT and FFT−1 denote the forward and reverse 
transformations of the 1D FFT, respectively. 𝑊 denotes 
the width of the image. The Hilbert transform can generate 
complex holograms from amplitude-type CGH. From the 
complex hologram obtained using the Hilbert transform, 
the phase CGH can be calculated by extracting the phase 
distribution using Eq. (3). 

At first glance, this may appear to be a redundant 
procedure. However, when implemented on an FPGA, the 
Hilbert transform circuit requires fewer resources than a 
circuit that directly calculates Eq. (1). Furthermore, as the 
Hilbert transform is independent for each line of the CGH, 
the amplitude-type CGH and the Hilbert transform can be 
computed concurrently. The computation time for the 
Hilbert transform can eventually be hidden. As a result, a 
FPGA-based special-purpose circuit can compute the 
phase-type CGH faster than it can compute Eq. (1). 

3 Implementation of a Special-purpose Calculation 
Circuit 

For the special-purpose computer implementation, we 
used the Xilinx Alveo U250 (U250). As an expansion board, 
the U250 is connected to a PC. The U250 implements 
phase-type CGH calculation circuits that use the Hilbert 
transform as a calculation accelerator from the PC. 
Figure 1 depicts the block diagram of the developed 
special-purpose computer. 

In Fig. 1, the recurrence relation unit (RRU) is an 
amplitude-type CGH calculation circuit that uses the 
recurrence relation algorithm. The Hilbert transform unit 
performs the Hilbert transform that reads CGH pixel data 
from the CGH RAM and writes it back to the CGH RAM 
after the RRU finishes calculating one CGH line. In this 
paper, 10 RRUs are installed in the FPGA; thus, ~20,000 
(1,920 (one RRU) × 10 Units) pixels can calculate in 
parallel.  

 

 
Fig. 1 Block diagram of a phase-type CGH 

calculation circuit using Hilbert transform, 
where MUX stands for multiplexer. 

4 Results 
A comparison of the time required to calculate a 

phased CGH of 1,920×1,080 pixels from 50,000 points 
is shown in Table 1. 

Table 1 Comparison of computation time. fps 
indicates frames per second. 

Calculation 
Hardware 

Calculation 
time [ms] 

fps 

U250: with the Hilbert 
transform (this work) 

27 37 

U250: without the 
Hilbert transform 

58 17 

GPU  
(NVIDIA RTX 2080 Ti) 

230 4.4 

CPU 
(Intel Core i9-9900K) 

11,014 0.091 

From Table 1, we achieved a speedup of 400 times 
compared to the CPU and 8.5 times faster than the GPU. 
Also, we succeeded in speeding up 2.1 times faster than 
our previous method, without the Hilbert transform but 
calculating Eq. (1). 

5 Discussion and Conclusions 
In this study, we used the Hilbert transform to create 

a special-purpose computer for phase-type 
electroholography. As a result, we succeeded in 
implementing ~20,000 parallel special-purpose 
computers. Furthermore, we achieved a speedup of 400 
times compared to the CPU, 8.5 times faster than the 
GPU, and 2.1 times faster than our previous method [5]. 

We plan to build a computation cluster using multiple 
FPGAs in the future. We would also like to build a 
computer system for CGH that has 4K and 8K pixels.  
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