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ABSTRACT 
Images and speech are essential for communication, 

but may be affected by physical/psychological constraints. 
Recently, deep generative models have emerged to solve 
this problem. Particularly, as generative adversarial 
networks (GANs) have high reproduction ability and 
flexibility, we present their foundation, advancement, and 
application, focusing on image synthesis and voice 
conversion. 

1 Introduction 
The world is overflowing with media data, such as 

images and speech, which are widely recognized as 
essential tools for communication. However, several 
constraints, such as physical and psychological 
boundaries, often prevent us from obtaining or creating the 
desired data and interfere with our communication. 

Deep generative models have recently enabled to 
convert or synthesize data without relying on detailed 
manual creation and manipulation. In particular, 
generative adversarial networks (GANs) [1] have gained 
considerable attention owing to their high reproduction 
ability and flexibility. These powerful characteristics have 
attracted researchers and engineers worldwide, and a 
wide range of research, from basic research to practical 
applications, has been actively conducted. 

To show the utility of GANs, in this study, we present 
the foundation, advancement, and application of GANs 
while focusing on image synthesis and voice conversion 
(VC). In particular, in Section 3, we explain the 
advancement of GAN while focusing on image synthesis, 
one of the primary research targets since the emergence 
of GANs. A strength of deep neural networks is that 
techniques in one area can be easily applied to tasks in 
other areas. This principle also holds for GANs. We 
demonstrate this by presenting the application of GANs to 
VC in Section 4. Finally, in Section 5, we conclude this 
paper with a discussion of future prospects. 

2 Foundation of GANs 
The aim of GANs [1] is to learn a generative distribution, 

!!(#) that matches a real distribution !"(#). Hereafter, we 
use superscripts % and & to denote the real and generated 
data, respectively. GAN achieves this aim by creating two 
networks, that is, a generator '  and a discriminator ( , 
which utilize the following objective: 

min
#
max
$

.(',() = 	2%!~'"())[log((#")]	

												+	2+~'(+) 9log :1 − (='(>)?@A , (1) 
where, given a random noise > , which is typically 
sampled from a standard normal or uniform distribution, 
'  attempts to synthesize data #! = '(>)  that can 
deceive (  by minimizing this objective, whereas ( 
attempts to distinguish #!  from real data #"  by 
maximizing this objective. 

When '  is fixed, and an optimal (  is obtained, 
Equation (1) can be reformulated as follows (see [1] for 
the detailed derivation): 
max
$

.(',() = − log(4) + 2 ∙ EF(=!"(#) ∥ !!(#)?, (2) 
where EF(  denotes the Jensen-Shannon divergence 
between two distributions. This equation means that ' 
can minimize the JSD between !"(#) and !!(#) under 
the optimal (, and theoretically supports that GANs can 
learn !!(#) that matches !"(#). 

3 Advancement of GANs in Image Synthesis 
We discuss the advancement of GANs from the 

following three aspects: improvement of controllability 
(Section 3.1), improvement of robustness (Section 3.2), 
and incorporation of optical constraints (Section 3.3). 
Note that the advancements of GANs expand across a 
wide area, and are not limited to those mentioned in this 
paper. 

3.1 Improvement of Controllability 
As discussed in Section 2, the standard GAN 

generates data from a random noise >. Thus, when we 
use GAN, the content of generated data is randomly 
determined, and the intended data is not always 
obtained. 

A conditional GAN (cGAN) [2] was proposed to 
alleviate this problem. cGAN incorporates a label H into 
the generator and discriminator (i.e., a conditional 
generator '(>, H) and a conditional discriminator ((#, H) 
are used) and trains them using the following objective: 

min
#
max
$

.(',() = 	2()",-")~'"(),-)[log((#" , H")]	

												+	2+~'(+),-#~'#(-)Ilog=1 − (('(>, H!), H!)?J. (3) 
This objective enables to learn !!(#, H)  that 
approximates !"(#, H), and allows us to manipulate the 
generated data #! = '(>, H) conditioned on H. However, 
its controllability is restricted by H. For example, when H 
is binary, we can only conduct a binary control even if the 
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corresponding attribute has richer expressions. 
To mitigate this restriction, a conditional filtered GAN 

(CFGAN) [3], which can control the attribute of the 
generated data multi-dimensionally even when H is binary, 
was proposed. CFGAN obtains this functionality by 
introducing an additional latent noise >. and learning the 
generator '(>, >′.)  and discriminator ((#, H)  using the 
following objective: 
min
#
max
$

.(',() = 	2()",-")~'"(),-)[log((#" , H")]	

+	2+~'(+),+$~'(+$),-#~'#(-)Ilog=1 − (('(>, >′.), H
!)?J, (4) 

where >′. =	N-(>.) . Here, N-  is a conditional filter that 
associates >/ with H, making it possible to represent label-
dependent multidimensional representations. Once '  is 
trained, we can control the attribute of the generated data 
multi-dimensionally by manipulating >′.. 

As another extension, the decision tree latent controller 
GAN (DTLC-GAN) [4], which can manipulate the attribute 
of the generated data in a coarse-to-fine manner, was 
proposed. The two core ideas of DTLC-GAN are (1) 
incorporation of a hierarchical sampling module and (2) 
introduction of curriculum learning that allows learning 
hierarchical representations step-by-step. See [4] for 
details. 

3.2 Improvement of Robustness 
Owing to the extensive studies on GANs, recent GANs 

can synthesize high-quality images. This high 
reproduction ability allows GANs to recreate training 
images faithfully, even when training images are degraded. 

A noise robust GAN (NR-GAN) [5], which can learn a 
clean image generator directly from noisy images, was 
proposed to solve this problem. In particular, to obtain this 
functionality without having complete noise information 
(e.g., the noise distribution type, noise amount, and signal-
noise relationship), NR-GAN uses a two-generator model 
composed of the image and noise generators and trains 
them simultaneously. However, in a naïve combination, 
there is no insensitivity to generate images and noise 
separately. Hence, NR-GAN imposes a distribution or 
transformation constraint on the noise generator. This 
constraint allows the noise generator to capture only 
noise-specific components and enables the image 
generator to capture only clean images. 

NR-GAN succeeds in noise robust image generation. 
However, its available degradation is limited to noise. It 
cannot be applied to irreversible image degradation, such 
as blur, compression, and combination of blur, noise, and 
compression, because NR-GAN assumes that 
degradation components have additive and reversible 
characteristics. Blur, noise, and compression robust GAN 
(BNCR-GAN) [6], which can learn a clean image generator 
directly from blurred, noisy, and compressed images, was 
proposed to address this problem. Similar to NR-GAN, 
BNCR-GAN uses a multiple-generator model comprising 
the image, blur-kernel, noise, and quality-factor generators. 
However, in contrast to NR-GAN, to address the 

irreversible characteristics of blur and compression, 
BNCR-GAN introduces masking architectures that 
adjust degradation strengths in a data-driven manner. 
Furthermore, to suppress the uncertainty resulting from 
the combination of multiple degradation processes, 
BNCR-GAN uses adaptive consistency losses, imposing 
consistency between the degradation processes 
according to the degradation strengths. By using these 
two techniques, the BNCR-GAN succeeds in blur, noise, 
and compression robust image generation. 

NR-GAN and BNCR-GAN are unconditional models 
that address degradation in an image domain. However, 
when a conditional model (e.g., cGAN [2] discussed in 
Section 3.1) is used, degradation can also occur in the 
label domain. To address this problem, a label-noise 
robust GAN (rGAN) [7], which can learn a clean label 
conditional image generator even when noisy labels are 
only available for training, was proposed. The core idea 
of rGAN is to incorporate a noise transition model into 
the conditional extension of GANs (i.e., cGAN [2] and 
auxiliary classifier GAN (AC-GAN) [8]). This 
incorporation allows rGAN to represent the transition 
between clean and noisy labels and learn a clean label 
conditional distribution only from noisy labels. 

The rGAN assumes that the labels are discrete and 
separable. However, class overlapping frequently occurs 
when data are collected based on various or ambiguous 
criteria. A classifier’s posterior GAN (CP-GAN) [9], which 
can capture between-class relationships and generate 
an image selectively conditioned on the class specificity, 
was proposed to address this situation. CP-GAN 
achieves this functionality by utilizing the classifier’s 
posterior to represent class-overlapping states. See [9] 
for details. 

3.3 Incorporation of Optical Constraints 
A standard GAN generator consists of convolutional 

neural networks (CNNs) and does not have an explicit 
constraint on three-dimensional (3D) structures. 
Consequently, it is not trivial for standard GANs to 
perform 3D-aware image generation. 

An aperture rendering GAN (AR-GAN) [10] was 
proposed to address this problem. AR-GAN equips 
aperture rendering on top of GANs to adopt focus cues. 
This architecture allows the AR-GAN generator to 
synthesize various depth of field (DoF) images using a 
virtual camera with an optical constraint on the light field. 
By fitting the various generated DoF images to real 
images using the GAN training, AR-GAN can learn the 
depth and DoF effect from natural images without 
additional supervision (e.g., ground-truth depth, pairs of 
deep and shallow DoF images, and pretrained model). 
The experiments demonstrate that AR-GAN can perform 
3D-aware image generation (particularly the generation 
of tuples of deep and shallow DoF images and depths). 
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4 Application of GANs to Voice Conversion 
In Section 3, we discussed the advancement of GANs 

in image synthesis, as it has been one of the primary 
research targets since the emergence of GANs. However, 
generative model learning using GANs is a general idea, 
and its application is not limited to image synthesis. In this 
section, we demonstrate this statement by presenting the 
applications of GANs to VC. In particular, we focus on non-
parallel VC, which is a challenging but practically valuable 
problem. 

4.1 Application of GANs to Non-parallel VC 
VC is a technique for converting a specific type of voice 

(e.g., a speaker’s voice) to another type (e.g., another 
speaker’s voice) without changing the linguistic content. 
VC has been actively studied owing to its various 
applications, such as speaking assistance and speech 
enhancement. Many VC methods are categorized as 
parallel VC, which trains a voice converter between the 
source and target speakers using a parallel corpus. 
Parallel VC has the advantage of being able to train the 
converter using explicit supervision. However, the required 
parallel corpus is often difficult or impractical to collect. As 
an alternative, non-parallel VC, a technique for training a 
voice converter without a parallel corpus, has been studied. 
Although non-parallel VC does not require a parallel 
corpus, the training of a converter without explicit 
supervision remains challenging. 

To address this challenge, CycleGAN-VC [11, 12] was 
proposed. CycleGAN-VC was inspired by CycleGAN [13], 
which was initially proposed in computer vision to achieve 
unpaired image-to-image translation. Following CycleGAN, 
CycleGAN-VC solves a non-parallel conversion problem 
using three losses: adversarial loss [1], cycle-consistency 
loss [14], and identity-mapping loss [15]. An adversarial 
loss is used to encourage the converted data to belong to 
the target data distribution. This loss helps improve the 
reality as the target; however, it is too weak to ensure 
content preservation between conversion because the 
loss only ensures that the converted data belong to the 
target distribution. CycleGAN-VC uses a cycle-
consistency loss to compensate for this weakness, which 
ensures content preservation through cyclic conversion. 
This loss allows for the determination of the pseudo pair 
within the cycle-consistency constraint without parallel 
supervision. Furthermore, an identity-mapping loss that 
encourages content preservation between conversion is 
used to enhance input preservation. Using these losses, 
CycleGAN-VC succeeded in obtaining good performance 
in non-parallel VC. 

4.2 Improvement of CycleGAN-VC 
CycleGAN-VC has been actively studied since its 

emergence, and several improved variants have been 
proposed. In this section, we introduce some of them. 

The early improved variant is CycleGAN-VC2 [16], 
which incorporates three techniques into CycleGAN-VC: 

an improved objective (two-step adversarial losses), 
improved generator (2-1-2D CNN), and improved 
discriminator (PatchGAN [17]). Two-step adversarial 
losses are used to improve the quality of cyclically 
reconstructed data; 2-1-2D CNN is used to efficiently 
conduct both conversion and content preservation, and 
PatchGAN is used to mitigate the difficulty in GAN 
training. The experimental results show that CycleGAN-
VC2 outperforms CycleGAN-VC in terms of naturalness 
and speaker similarity. 

CycleGAN-VC/VC2 uses mel-cepstrum as a 
conversion target and utilizes the WORLD vocoder [18] 
to synthesize waveforms from converted mel-cepstrum. 
As an alternative waveform synthesis method, mel-
spectrogram-based neural vocoder (e.g., MelGAN [19] 
and Parallel WaveGAN [20]) has recently gained 
attention owing to its synthesis quality. Motivated by this 
progress, CycleGAN-VC3 [21] and MaskCycleGAN-VC 
[22], which are improved variants of CycleGAN-VC for 
mel-spectrogram conversion, were proposed. Both 
models aim to capture the time-frequency structures in 
the mel-spectrogram because they are often 
compromised in CycleGAN-VC/VC2. CycleGAN-VC3 
achieves this aim by using time-frequency adaptive 
normalization (TFAN), which can adjust the scale and 
bias of the converted features while reflecting the time-
frequency structure of the input mel-spectrogram. In 
contrast, MaskCycleGAN-VC achieves this aim by 
introducing filling-in-frames, which applies a temporal 
mask to the input mel-spectrogram and makes the 
converter fill in missing frames based on surrounding 
frames. This task encourages the converter to learn the 
time-frequency structure in a self-supervised manner 
and removes the requirement of an additional module, 
such as TFAN used in CycleGAN-VC3. The 
experimental results showed that CycleGAN-VC3 
outperformed CycleGAN-VC/VC2, and MaskCycleGAN-
VC outperformed CycleGAN-VC/VC2/VC3. 

4.3 Extension to May-to-Many VC 
CycleGAN-VCs are models for one-to-one VC. Hence, 

we need to prepare a large number of models to conduct 
many-to-many VCs. To mitigate this requirement, 
StarGAN-VC [23], a conditional extension of CycleGAN-
VC, was proposed. StarGAN-VC is based on StarGAN 
[24], which was initially proposed in computer vision to 
achieve multi-domain image-to-image translation. 
Following StarGAN, StarGAN-VC incorporates 
conditional information (e.g., speaker labels) into the 
model. This incorporation allows switching of the source 
and target domains based on the labels in a unified 
model. Consequently, StarGAN-VC succeeds in 
conducting many-to-many VC using only a single model. 

Improved variants of StarGAN-VC (StarGAN-VC2 
[25] and A-StarGAN-VC [26]) have also been proposed. 
See the corresponding papers for details. 
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5 Conclusions 
Images and speeches are essential in our 

communication; however, we cannot always obtain the 
desired ones owing to several constraints. Recently, 
GANs have gained attention as a solution to this problem. 
To demonstrate the utility of GANs, we presented the 
foundation, advancement, and application of GANs while 
focusing on image synthesis and VC. Owing to space 
limitations, we mainly focused on our studies. However, 
GANs have been applied to several areas and enable 
various kinds of synthesis and conversion that were not 
possible previously. We expect that studies on GANs will 
continue to progress by researchers and engineers, 
including the readers of this paper. In the future, we expect 
that complete elimination of the interference in 
communication will be achieved. 
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