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ABSTRACT 

We have developed our Deep Depth from Aberration 

Map (DDfAM) that can obtain a valid depth map from a 

single-shot image with a monocular camera even if no 

contextual information exists. In this paper, we explain two 

of our recent efforts: application for smartphone cameras 

and depth inference acceleration.  

1 Introduction 

Depth measurement from a single-shot image is 

becoming more and more important in various fields, such 

as autonomous driving of mobile vehicles, augmented 

reality, and infrastructure inspection. Although a lot of 

methods for obtaining depth from images have already 

been proposed, scene-independent depth measurement 

using small devices is still desired. For example, in 

infrastructure inspection work, there is a growing need for 

object measurement that can be easily performed with 

smartphone cameras to improve work efficiency. Stereo 

camera systems [1] have been widely used as an example 

of image-based depth measurement, but these systems 

require a wide baseline for accurate depth and are difficult 

to apply to small devices. Recently, various methods for 

context-based depth estimation using a single image have 

been proposed [2]. However, these methods are 

dependent on the learned contextual information, so their 

robustness to scenes of new domains is an issue.  

We proposed a Deep Depth from Aberration Map 

(DDfAM) [3], a novel approach of physics-based single-

shot depth estimation utilizing lens aberration map, which 

contains various types of aberrations corresponding to 

positions of image and distance from the image sensor.  

While it had the advantage of robustly estimating the depth 

of the scene, the validation of our approach was limited to 

images from DSLR cameras and had not yet been tested 

on small devices, especially smartphone cameras. In 

addition, our conventional network estimated depths by 

sliding window, resulting in slow processing speed. This 

means that even if this method could be applied to 

smartphone cameras, the advantage of smartphones, 

their ease of use, would be lost. 

In this paper, we present a single-shot depth 

measurement using a smartphone camera with DDfAM. 

We also propose a network structure that speeds up 

depth inference for practical use in smartphones. This 

allows us, for example, to get the depth map immediately 

as long as we take an image with our smartphone and 

upload it to the inference server (Fig. 1), which can be 

applied to efficient inspection systems or real-time size 

measurement. 

2 Method 

2.1 Depth measurement with DDfAM 

In the DDfAM framework, as with Depth from Defocus 

(DfD) [4], we estimate the defocus blur radius from an 

image. A blur radius 𝑏  is derived from the following 

formula, 

𝑏 =
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where 𝑢 , 𝑎 , 𝑓 , 𝐹 , 𝑝 , and 𝑣𝑓  are object distance, lens 

aperture, focal length, aperture number, sensor pitch, 

and distance between the lens and the image sensor, 

respectively. As can be seen from Eq. (1), the defocus 

blur can be the same value on the far or near side of the 

focal plane. Consequently, the DfD method requires two 

or more images to determine whether the depth is on the 

far or near side. In contrast, in the DDfAM approach, we 

estimate “signed” defocus blur, which is unique with 

measured distance, based on analyzing an aberration 

Fig. 1 Overview of DDfAM. Fig. 2 Optical rays and chromatic aberration. 
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map.  

Fig. 2 shows the relationship between optical rays 

passing through a lens and chromatic aberration. Fig. 2(a) 

shows how the R, G, B rays travel when chromatic 

aberration is caused by the camera lens when the distance 

to the object 𝑢 is closer to (near), the same as (in-focus) 

and farther from (far) the camera focus distance 𝑢𝑓. The 

achromatic lens is made of a low-dispersion convex lens 

and a high-dispersion concave lens to compensate for a 

blue and red light so that it can suppress the spread of light. 

However, since it is still difficult to remove lens aberrations 

completely, the light does not converge to a single point. 

When 𝑢 > 𝑢𝑓  (far), the green blur is the largest and the 

edges of texture appear green. When 𝑢 < 𝑢𝑓 (near), the 

purple blur is the largest and the edges appear purple, 

which is a mixture of red and blue. These are called green 

fringing and purple fringing, respectively (Fig. 2(b)).  

Actually, due to the off-axial aberrations such as coma 

aberration, the color pattern of defocus blur depends on 

the position in the image as well as the distance of an 

object. We call images which contains this position-

dependent and distance-dependent aberrations as 

aberration map (A-Map). In DDfAM, by analyzing this A-

Map with DNN, it is possible to estimate the “signed” 

defocus blur radius  �̂� reflecting whether the object is on 

the near or far plane. 

�̂� =
𝑎𝑣𝑓
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This value is positive when the object is on the far plane, 

and negative when the object is on the near plane. The 

definition of signed defocus blur makes its value unique 

with the distance 𝑢, regardless of whether the object is in 

the near or far plane. 

In the A-Map analysis network framework, Bayer-array 

images with the RAW format are used as input. After 

preprocessing such as demosaicing, resizing, and white 

balance correction, they are converted to blur maps by 

DNN. The networks learn the relationship between blur 

features and ground truth distances, trained as a 

regression problem with supervision. For collecting 

training and testing datasets, we develop an indoor 

experimental system containing a moving stage and a 

screen as shown in Fig. 3. We put a camera on the moving 

stage and capture images of MSCOCO [7] tiling patterns 

displayed on the screen monitor. At the same time, the 

distance from the camera to the screen is recorded as 

ground truth. In the case of using a smartphone camera 

with a small image sensor, the moiré on the monitor may 

reduce depth accuracy. Therefore, we add the printed 

pattern images pasted on the screen to training datasets. 

In this paper, we use images taken for 100 points between 

400 and 1200 mm with a focus distance of 600mm as 

training datasets.  

2.2 Application for smartphone cameras 

In recent years, high-end smartphones are equipped 

with a dual-camera system consisting of a wide-angle 

camera (Wide) with a focal length of about 4mm and a 

telephoto camera (Tele) with a focal length of about 6mm, 

or even a triple-camera system including an ultra-wide-

angle camera. In this paper, we evaluate the 

performance of DDfAM using the Tele and Wide 

cameras of iPhone11Pro experimentally.  

Fig. 4 shows PSF images taken at three locations: 

near-plane, in focus, and far-plane. The result for a 

DSLR camera (Nikon D810, f=50mm, f/4) and a Tele 

camera (f=6mm, f/2) are shown in Fig. 4(a) and (b) 

respectively. These PSF images were extracted from the 

center of the images taken of a monitor with only one 

pixel lit. While the image sensor of the DSLR camera is 

full-frame, the image sensor of iPhone11Pro Tele is 1/3.4” 

and has an area of about 1/72. This reduces the amount 

of light collected and lowers the signal-to-noise ratio in 

smartphone cameras. In addition, since the lenses for 

smartphone cameras are generally smaller and have 

shorter focal lengths, their resolution and contrast are 

more likely to be degraded compared to DSLR cameras. 

Reflecting this fact, while the colored-edge fringe by 

chromatic aberration is visible in the PSF image of a 

DSLR camera (Fig. 4(a)), the colored-edge fringe is 

unclear in the PSF image of a smartphone camera (Fig. 

4(b)). Thus, it is more difficult to extract depth cues from 

smartphone images.  

2.3 Fast inference network 

Conventional A-Map analysis network is based on 

Fig. 4 Comparison of PSF images of a DSLR 

camera and a smartphone camera. 

Fig. 3 Experimental system 
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dense patch-wise processing, where the input images are 

converted into many patches with densely overlapping, 

and this causes slow inference. For practical use, a real-

time analysis will be required for some applications. Then, 

we propose a network that speeds up the depth inference 

process as shown in Fig. 5. Instead of dense sampling, we 

introduce sparse sampling that converts the input images 

to patches without overlapping. Then an upsampling 

decoder converts the blurs estimated by the pre-trained 

patch-wise network to the depth maps. The structure of the 

decoder is based on MSGNet [5], a method of upsampling 

depth resolution, and there is a shortcut connection of the 

patch-wise features to the decoder similar to U-Net [6] 

suitable for the patch-processing network. For training the 

decoder, to restore the resolution lost in sparse sampling, 

we propose a transfer learning method that takes depth 

map by the dense patch-wise processing of the pre-trained 

network as supervision. 

We use the following L1 loss function to train the 

decoder, fixing the encoder parameter 𝜃, 

𝐿(𝜙) = ∑ |�̂� − 𝑔𝜙 (𝑝−1 (𝑓�̂�(𝑝(𝐼))))|

𝐼∈𝑁

, (3) 

where  �̂� is the output by the pre-trained network 𝑓 and 𝑝 

is the sparse sampling operator. 

3 Results 

3.1 Evaluation for smartphone cameras 

We used the Tele (f=6mm, f/2) and Wide (f=4.25mm, 

f/1.8) cameras of iPhone11Pro and downsampled the 

captured images to 2016x1512 (1/2 of original size) for the 

depth analysis. For comparison, we also show stereo 

depth maps calculated by Semi Global Matching [1][8] to 

images of Tele and Wide cameras with about 15mm 

baseline. We note that this is not an equal comparison 

because DDfAM and stereo methods are based on 

different principles and the baseline of the stereo method 

is fixed. 

For quantitative evaluation, we used our experimental 

system stated above. Moving the stage from the object 

distance of 400mm to 1200mm, we captured images of 

patterns displayed on the screen monitor and calculated 

the mean error between the estimated depth map for 

pattern images, which should ideally be uniform, and 

ground truth distances. The results of the depth error at 

each distance are shown in Fig. 6, along with the depth 

error averaged over the measured distance range. As 

the result shows, the mean errors of the proposed and 

stereo method are almost the same in this evaluation.  

The qualitative results for indoor and outdoor scenes 

are shown in Fig. 7. As for the stereo results, depth can 

be estimated in the region where feature points can be 

matched, however, errors are observed in textures in the 

same direction as the disparity (e.g., horizontal lines or 

repeating patterns). Moreover, there are some areas 

where stereo matching fails despite the presence of 

texture in Fig. 7(b), since iPhone11Pro’s optical image 

stabilization may cause a calibration shift when the 

camera is tilted. In contrast, the proposed method for the 

Tele camera can estimate valid depth from near to far, 

independent of the pattern and the tilt of the camera.  

3.2 Evaluation for inference speed 

For evaluation of the fast inference network, we used 

a DSLR camera (Nikon D810, f=50mm, f/4), whose 

depth performance had already been verified. The 

qualitative results of depth analysis for an outdoor scene 

are shown in Fig. 8. The input image is shown in Fig. 8(a).  

While a context-based monocular depth estimation 

method [2] cannot estimate the correct depth map (Fig. 

Fig. 5 Fast inference network with sparse sampling. 

Fig. 6 Result of mean depth error. 

Fig. 7 Qualitatitve results for indoor and outdoor 
scenes. Near objects are displayed in red and far 
objects in blue. Gray indicates there is no depth cue. 
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8(c)) in this scene without contextual information, the 

proposed method (sparse sampling) estimates the valid 

depth map (Fig. 8(e)), almost equivalent to the 

conventional method (Fig. 8(d)) and stereo method (Fig. 

8(b)) with two DSLR cameras at 250mm baseline. On the 

other hand, the inference time for an image with the 

resolution 1845x1232 is reduced from 68 seconds to 0.185 

seconds using the proposed method by only 4GB GPU 

memory, which is 360 times faster than the conventional 

method. 

4 Conclusions 

 In this paper, we propose a depth measurement 

method using a single-shot image of a smartphone 

camera. The evaluation results show that our method can 

analyze depth robustly to the scene in both indoor and 

outdoor images, even when using images of smartphone 

cameras, which have fewer depth cues than DSLR 

cameras. This allows us to perform depth measurement 

robustly to the environment at a low cost, without 

additional devices. In addition, we propose a network 

structure that speeds up the depth inference process, and 

we confirm this network can infer 300 times faster than the 

conventional network with patch-based architecture, 

demonstrating the potential of real-time processing. In the 

future, we will continue to improve the accuracy and study 

the implementations of our products and services. 
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Fig. 8 Comparisons of qualitative results for various 
methods. (a) An input image. (b) Depth of  stereo 
method[1][8] as a reference. (c) Depth of  context-
based method [2]. (d) Depth of patch-wise network. (e) 

Depth of proposed network. 
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