Ferroelectric Oxide for Display Application

Md Mehedi Hasan, Suihui Lee, and Jin Jang*

E-mail: jjang@khu.ac.kr

Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 02447, South Korea Keywords: Ferroelectric oxide, Low temperature process, Solution process

ABSTRACT

We review the oxide TFTs with ferroelectric gate insulator for display application. The HfZrO, in between ZrO_x and AIO_x , shows the ferroelectric properties. We used this material for ZnO TFTs on glass. In this talk we will focus on how to make ferroelectric materials at low temperatures for the application to flexible ferroelectric electronics.

1 Introduction

Recently, HfO₂-based ferroelectrics attract great attentions because of many advantages such as large polarization in ultrathin, wide gap thin films, which can be compatible with CMOS process.[1] Ferroelectric thin film transistors (FE-TFTs) as memory devices have drawn a great deal of attention, because of the increasing demand for embeddable and wearable systems.[2] Most of the ferroelectric HfZrO (HZO) TFTs have been reported using vacuum deposition technique, and the ferroelectricity is induced by TiN capped layer. The capping layer should be removed for active layer deposition. This increases the process step and cost of fabrication. Table I summarizes the reported FE-TFTs using HZO as the gate insulator (GI).

We report a ferroelectric thin film transistor on glass substrates by cost effective, solution process. We found that the ferroelectricity of the hafnia films can be improved

Fig. 1 (a) Schematic cross-sectional view of the fabricated ZnO TFT with a ferroelectric gate insulator. (b) GI-XRD spectra of HZO/AlO_x films on glass. (c) Transfer characteristics with hysteresis and corresponding leakage current of spray coated ZnO TFTs on stack HZO/AlO_x gate insulator.

using stack layers, which would be compatible to flexible substrate

2 Result and Discussion

We fabricated the ZnO TFTs on the glass substrate using HZO/AlO_x GI with bottom-gate, top-contact structure shown in Fig.1 (a). The detail of solution synthesis process appears elsewhere.[19] For HZO/AlO_x-based devices, films were deposited by spin coating and crystallized by annealing the films at 450 °C for 2 h in an N₂ furnace. The active layer of the ZnO (30 nm) was deposited by spray pyrolysis.

Fig. 1(b) represents the GI-XRD pattern of the HZO/AlO_x on glass substrate. A clear and distinct peak at 30.4° could be seen for the HZO/AlO_x film, which is believed to be due to the induced ferroelectricity in HfO₂ based film.[19-20] It is reported that AlO_x has the suitable thermal expansion coefficient (CTE) to induce

Fig. 2 (a) Cross-sectional transmission electron microscope (TFM) image of spray coated ferroelectric $ZrO_x/HZO/AIO_x$ gated ZnO TFT, inset of figure (a) shows the fast Fourier transform of ZnO and HZO, respectively, which confirm the c-axis grain growth of ZnO and polycrystalline structures of HZO. (b) Capacitance-voltage characteristics of ZrO_x/HZO/AIO_x from MIM structure. (c) Transfer characteristics with hysteresis and corresponding leakage current of spray coated ZnO TFTs on stack ZrO_x/HZO/AIO_x gate insulator.

Bottom electrode	HZO deposition	Crystallization technique	TFT channel	Channel deposition	Memory Window (V)	S/D electrode
	technique		material	technique		
Tin (Ref. 3)	ALD	RTA(430 °C) in N ₂ covered with TiN	C ₆₀	Thermal evaporation	N/A	AI
TiN (Ref. 4)	ALD	RTA(500 °C) in N ₂ covered with a- GeSn	GeSn	Physical vapor deposition	1.6 V	Ni
TiN (Ref. 5)	ALD	Flash lamp (375 °C) in N ₂	WOx	RF sputtering	N/A	W
P++Si (Ref. 6)	ALD	RTA (500 °C) in N ₂	WS ₂	Exfoliation	~2.5 V	Ti/Au
TiN (Ref. 7)	ALD	Annealing free	MoS ₂	Exfoliation	~1.3 V	Ti/Au
P++Si (Ref. 8)	ALD	RTA (500 °C) in N ₂	ITO	RF sputtering	N/A	Ni
P++Si (Ref. 9)	ALD	RTA (400 °C) in N ₂	ITO	RF sputtering	N/A	Ni
TiN (Ref. 10)	ALD	RTA(400 °C) in N ₂ covered with IZO	IZO	RF sputtering	~3 V	Мо
TiN (Ref. 11)	ALD	RTA(500 °C) in N ₂ covered with TiN	IGZO	RF sputtering	~1 V	Мо
P+Si (Ref. 12)	ALD	RTA(500 °C) in N ₂ covered with TiN	IGZO	RF sputtering	~1 V	Мо
TiN (Ref. 13)	ALD	350 °C furnace annealing	IGZO	RF sputtering	N/A	Мо
TiN (Ref. 14)	ALD	RTA(400 °C) in N ₂ covered with TiN	IGZO	RF sputtering	~2 V	Мо
TiN (Ref. 15)	ALD	RTA(500 °C) in N ₂ covered with TiN	IGZO	RF sputtering	~1 V	Мо
TiN (Ref. 16)	ALD	RTA(400 °C) in N ₂ covered with TiN	IGZO	RF sputtering	~2 V	AI
TiN (Ref. 17)	ALD	RTA(400 °C) in N ₂ covered with IZO	IZTO	RF sputtering	~1 V	Мо
TiN (Ref. 18)	ALD	Annealing free	IZO	RF sputtering	~1.2 V	ITO
Mo (Ref. 19) *[Our work]	Spin coating	Furnace annea. (450 °C) in N ₂	ZnO	Spray pyrolysis	~2.15 V	Мо
Mo (Ref. 20) *[Our work]	Spray pyrolysis	RTA (650 °C) in N ₂	ZnO	Spray pyrolysis	~3.5 V	Мо

Table 1 Summary of the FE-HZO TFTs reported in the literatures.

ALD= Atomic layer deposition, RTA=Rapid thermal annealing, N/A=Not applicable

ferroelectricity in HfO_2 based film.[20] Anticlockwise hysteresis with a memory window (MW) of 1.95V, confirms the induced ferroelectricity in HZO/AIO_x GI in ZnO TFT.

To further improve the ferroelectric performance, we fabricated stack GI, using ZrO_x , HZO, and AlO_x, where all the layers were deposited by spray pyrolysis. Fig. 2 (a) shows the cross-section TEM images of the fabricated of ZnO TFTs with $ZrO_x/HZO/AlO_x$ GI. Ferroelectric behavior, bowknot feature hysteresis, could be seen in the capacitance-voltage (C-V) characteristics [Fig.2 (b)]. A

large MW of ~3.2V could be obtained from the $ZrO_x/HZO/AIO_x$ based TFT, as shown in Fig. 2(c). The improved ferroelectricity in HZO could originate from the different CTE of bottom ZrO_x and top AIO_x layer with HZO.[20]

3 Conclusion

We have developed loe cost, ferroelectric HZO by using bottom ZrO_x and top AIO_x stack structure. The TFT on glass exhibits MW of 3.2 V, which is high enough for display application. The process could be done at less

than 450 °C so that the current flexible substrate technique could be utilized.

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020M3H4A1A02084899).

Reference

- J. Müller et al., "Ferroelectricity in simple binary ZrO₂ and HfO₂," Nano Lett., vol. 12, no. 8, pp. 4318–4323, 2012.
- [2] S. K. Hwang, I. Bae, R. H. Kim, and C. Park, "Transistors: Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation," Adv. Mater., vol. 24, no. 44, pp. 5904– 5904, 2012
- [3] H. Yu et al., "Flexible inorganic ferroelectric thin films for nonvolatile memory devices," Adv. Funct. Mater., vol. 27, no. 21, p. 1700461, 2017
- [4] C.-P. Chou, Y.-X. Lin, Y.-K. Huang, C.-Y. Chan, and Y.-H. Wu, "Junctionless poly-GeSn ferroelectric thinfilm transistors with improved reliability by interface engineering for neuromorphic computing," ACS Appl. Mater. Interfaces, vol. 12, no. 1, pp. 1014–1023, 2020
- [5] M. Halter et al., "Back-end, CMOS-compatible ferroelectric field-effect transistor for synaptic weights," ACS Appl. Mater. Interfaces, vol. 12, no. 15, pp. 17725–17732, 2020.
- [6] L. Chen et al., "A van der Waals synaptic transistor based on ferroelectric hf_{0.5}Zr_{0.5}O₂ and 2D tungsten disulfide," Adv. Electron. Mater., vol. 6, no. 6, p. 2000057, 2020.
- [7] H.-B. Kim, M. Jung, Y. Oh, S. W. Lee, D. Suh, and J.-H. Ahn, "Superior and stable ferroelectric properties of hafnium-zirconium-oxide thin films deposited via atomic layer deposition using cyclopentadienylbased precursors without annealing," Nanoscale, vol. 13, no. 18, pp. 8524–8530, 2021.
- [8] M. Si et al., "Indium-tin-oxide transistors with one nanometer thick channel and ferroelectric gating," ACS Nano, vol. 14, no. 9, pp. 11542–11547, 2020.
- [9] M. Si et al., "BEOL compatible indium-tin-oxide transistors: Switching of ultrahigh-density 2-D electron gas over 0.8 × 10¹⁴/cm² at oxide/oxide interface by the change of ferroelectric polarization," IEEE Trans. Electron Devices, vol. 68, no. 7, pp. 3195–3199, 2021.

- [10] M.-K. Kim, I.-J. Kim, and J.-S. Lee, "CMOScompatible ferroelectric NAND flash memory for high-density, low-power, and high-speed threedimensional memory," Sci. Adv., vol. 7, no. 3, 2021.
- [11] T. Lu, R. Liang, R. Zhao, Y. Yang, and T.-L. Ren, "Fabrication and characterization of ferroelectric HfZrO-based synaptic transistors with multi-state plasticity," in 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2020.
- [12] Y. Liu et al., "Plasmon enhanced InGaZnO ultraviolet photodetectors tuned by ferroelectric HfZrO," Adv. Electron. Mater., vol. 5, no. 12, p. 1900588, 2019.
- [13] D. Lehninger et al., "A fully integrated ferroelectric thin film transistor influence of device scaling on threshold voltage compensation in displays," Adv. Electron. Mater., vol. 7, no. 6, p. 2100082, 2021.
- [14] M.-K. Kim and J.-S. Lee, "Ferroelectric analog synaptic transistors," Nano Lett., vol. 19, no. 3, pp. 2044–2050, 2019.
- [15] H. Liu et al., "Flexible quasi van der Waals ferroelectric hafnium based oxide for integrated high performance nonvolatile memory," Adv. Sci., vol. 7, no. 19, p. 2001266, 2020.
- [16] M.-K. Kim and J.-S. Lee, "Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in Hafnia-based oxidesemiconductor transistors," Adv. Mater., vol. 32, no. 12, p. 1907826, 2020.
- [17] M.-K. Kim, I.-J. Kim, and J.-S. Lee, "Oxide semiconductor-based ferroelectric thin-film transistors for advanced neuromorphic computing," Appl. Phys. Lett., vol. 118, no. 3, p. 032902, 2021.
- [18] Y. Li et al., "A ferroelectric thin film transistor based on annealing-free HfZrO film," IEEE J. Electron Devices Soc., vol. 5, no. 5, pp. 378–383, 2017
- [19] M. M. Hasan, C. W. Ahn, T. H. Kim, and J. Jang, "Solution processed high performance ferroelectric Hf_{0.5}Zr_{0.5}O₂ thin film transistor on glass substrate," Appl. Phys. Lett, vol. 118, no. 15, p. 152901, 2021.
- [20] M. M. Hasan et al., "High performance ferroelectric ZnO thin film transistor using AlO_x/HfZrO/ZrO_x gate insulator by spray pyrolysis," Appl. Phys. Lett., vol. 119, no. 9, p. 093502, 2021.