High-mobility (>100 cm²V⁻¹s⁻¹) In₂O₃:H Thin-film Transistors by Solid-phase Crystallization

Yusaku Magari¹, Wenchang Yeh², and Mamoru Furuta³

magari.yusaku@es.hokudai.ac.jp

¹ Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan

² Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan

³ School of Environmental Science and Engineering, Kochi University of Technology, Kami 782-8502, Japan Keywords: Polycrystalline oxide semiconductors, In₂O₃:H, solid-phase crystallization, thin-film transistors, high mobility

ABSTRACT

We propose a simple process to obtain highperformance thin-film transistors (TFTs), namely hydrogenated polycrystalline In_2O_3 (In_2O_3 :H) TFTs grown via the low-temperature solid-phase crystallization (SPC) process. In_2O_3 :H TFTs fabricated at 300 °C exhibit superior switching properties with field-effect mobility of 139.2 cm²V⁻¹s⁻¹, a subthreshold swing of 0.19 Vdec⁻¹, and a threshold voltage of 0.2 V.

1 Introduction

Amorphous oxide semiconductors (AOSs) have been extensively studied as active channel layers of thin-film transistors (TFTs) for backplane of LCDs and OLED displays.[1-4] This is because AOSs represented by amorphous In–Ga–Zn–O (a-IGZO) has properties that are superior to hydrogenated amorphous Si (a-Si:H), such as a large field-effect mobility (μ_{FE}) of over 10 cm²V⁻¹s⁻¹, an extremely low leakage current, a low processing temperature (<350 °C), and large-area scalability.[1-4] Although the μ_{FE} value of a-IGZO TFTs is more than ten times higher than that of a-Si:H TFTs (<1 cm² V⁻¹ s⁻¹), the further improvement of μ_{FE} values is required to expand their range of applications as alternatives to poly-Si TFTs (~100 cm² V⁻¹ s⁻¹).

The optimization of AOS composition is one approach for improving μ_{FE} ; for example, an increase in the In ratio due the considerable spatial spread of the In 5s orbital with a large overlap can provide a facile electron transport path with a low electron effective mass.[5-7] Although the various AOS compositions have been proposed, the μ_{FE} value remains insufficiently high to compete with that of poly-Si TFTs.

In contrast, the crystallization of OSs is an another approach for improving μ_{FE} , because the subgap density of states originating from structural disorder and defects can be suppressed via lattice ordering. Although polycrystalline OSs, including In₂O₃, ZnO, and SnO₂, have been investigated as channel materials in early oxidebased TFTs, they can easily create oxygen vacancies, leading to degenerate semiconductors.[8-10] In addition, μ_{FE} degradation due to grain boundary scattering is a serious issue for polycrystalline OSs as well as poly-Si.[11] Polycrystalline In₂O₃ films have been investigated for use as the transparent conductive oxide (TCO) in solar cells. Koida et al. reported a degenerate hydrogen-doped polycrystalline In_2O_3 film with high electron mobility (100–130 cm²V⁻¹s⁻¹) produced by solid-phase crystallization (SPC).[12]

This study proposes a simple material and a simple process to obtain high-performance TFTs, namely hydrogenated polycrystalline In_2O_3 (In_2O_3 :H) TFTs grown via the low-temperature SPC process.[13] We believe these SPC-grown In_2O_3 :H TFTs have a great potential for use in future electronics applications.

2 Experimental

In₂O₃:H TFTs were fabricated on a heavily doped ptype Si substrate with a 100-nm-thick thermally grown SiO₂. The doped *p*-type Si substrate and the SiO₂ were used as the gate electrode and the gate insulator. The 30-nm-thick In₂O₃ and In₂O₃:H channels were deposited via pulsed direct-current (DC) magnetron sputtering without substrate heating from a ceramic In₂O₃ target using a mixture of Ar, O₂, and H₂ gases. The O₂ and H₂ gas flow ratios are $R[O_2] = O_2/(Ar+O_2+H_2)$ and $R[H_2] =$ H₂/(Ar+O₂+H₂), respectively. For the Ar+O₂-sputtered In₂O₃ film, *R*[O₂] was set to 1% without H₂ introduction $(R[H_2] = 0\%)$. For the Ar+O₂+H₂-sputtered In₂O₃ film $(In_2O_3:H)$, $R[O_2]$ and $R[H_2]$ were 1% and 5%, respectively. The deposition pressure and DC power were maintained at 0.6 Pa and 50 W, respectively. The base pressure before gas introduction was below 6 × 10⁻⁵ Pa. The In₂O₃ and In₂O₃:H films were then annealed in ambient air at 300 °C for 1 h. After annealing, a 100-nm-thick SiO₂ film was deposited via reactive sputtering without substrate heating. This film served as a passive layer. Subsequently, Al source/drain electrodes were deposited via sputtering. Finally, In2O3 and In2O3:H TFTs were annealed at 250 °C in ambient air for 1 h. The In₂O₃, SiO₂, and AI films were deposited through a shadow mask. Both the channel length and the width were 300 μm.

3 Results and discussion

3.1 Structural properties of the In₂O₃ and In₂O₃:H films.

Figure 1 depicts the Electron backscattering

diffraction (EBSD) images of the (a) In_2O_3 ($R[H_2] = 0\%$) and (b) In_2O_3 :H ($R[H_2] = 5\%$) films before and after annealing at 250 °C. For the as-deposited In₂O₃ film, a randomly oriented small grain structure embedded in the amorphous matrix can be observed. The grain structure disappeared by introducing hydrogen during sputtering. In contrast, a huge grain structure appeared for In₂O₃:H film after annealing at 250 °C, indicating SPC occurrence. The EBSD results show that the nuclei density in the asdeposited film was suppressed by introducing hydrogen during sputtering. Because of the reduction in the nuclei density in the initial In₂O₃:H film, the grain size of the In₂O₃:H film could be enlarged through SPC. Thus, the controlling the crystallinity and nuclei density in the asdeposited film are key factors to achieve high-quality In₂O₃:H films.

Fig. 1. Structural properties of the In_2O_3 and In_2O_3 :H films. EBSD images of the (a) In_2O_3 ($R[H_2] = 0\%$) and (b) In_2O_3 :H ($R[H_2] = 5\%$) films before and after annealing at 250 °C.

Figure 2 shows the Hard X-ray photoelectron spectroscopy (HAXPES) spectra around the bandgap energy (E_9) region obtained from the In₂O₃ and In₂O₃:H films before and after annealing at 300 °C in ambient air. For the as-deposited films, the near-valence band maximum (near-VBM) and the near-conduction band minimum (near-CBM) states significantly increased by introducing hydrogen. In contrast, both the near-VBM and near-CBM states in the In₂O₃:H film decreased after annealing at 300 °C, resulting that the density of near-CBM states in the In₂O₃:H was lower than that in the In₂O₃

after annealing at 300 °C. The reduction of the near-CBM states is expected to strongly affect the carrier transport properties of the film.[14] HAXPES analysis revealed that indicating that the SPC process is effective for reducing the number of subgap defects.

Fig. 2. Subgap states in the In_2O_3 and In_2O_3 :H films. HAXPES spectra around E_g region obtained from the In_2O_3 and In_2O_3 :H films before and after annealing at 300 °C in ambient air.

3.2 Electrical properties of the In₂O₃ and In₂O₃:H films.

Figures 3a and 3b show the Hall mobility (μ_{Hall}) and carrier concentration (N_e) of the 50-nm-thick In_2O_3 and In_2O_3 :H films as a function of the annealing temperature. In_2O_3 without hydrogen introduction exhibited an almost constant μ_{Hall} value over the entire range of investigated annealing temperature values, as shown in Fig. 3a. In contrast, upon annealing at 200 °C, the μ_{Hall} of In_2O_3 :H film increased to 104.0 cm²V⁻¹s⁻¹, indicating that the SPC started at an annealing temperature value between 150 °C and 200 °C. The increased μ_{Hall} is attributable to the increased grain size, as shown in Fig. 1b. The obtained μ_{Hall} value is five times higher than that of the In_2O_3 film.

Regarding the N_e of the films, for the as-deposited films, N_e increased from 7.1 × 10¹⁹ to 5.7 × 10²⁰ cm⁻³ by introducing hydrogen, as shown in Fig. 3b. Since hydrogen acts as a shallow donor in In₂O₃,[15] the increase in the N_e of the as-deposited In₂O₃:H film is attributable to hydrogen doping effects. The In₂O₃ film deposited without hydrogen introduction exhibited an almost constant N_e value over the whole range of investigated annealing temperature values. On the other hand, the N_e of the In₂O₃:H film rapidly decreased for annealing temperature higher than 200 °C where SPC occurs. As a result, an appropriate N_e value of 2.0 × 10¹⁷ cm⁻³ for TFT fabrication was obtained at annealing temperature of 300 °C for the In₂O₃:H film. This N_e value is over two orders of magnitude lower than that of the In₂O₃ film deposited without hydrogen introduction ($3.0 \times 10^{19} \text{ cm}^{-3}$). Although adding H₂ induced the formation of free carriers in the as-deposited films, the N_e of the films could be reduced via the relatively low-temperature SPC process and became comparable to that of single-crystalline epitaxial In₂O₃ films deposited at 650 °C (~1 × 10^{17} cm^{-3}).[16]

Fig. 3. Electrical properties of the In_2O_3 and In_2O_3 :H films. (a) μ_{Hall} and (b) N_e of In_2O_3 and In_2O_3 :H films as a function of the annealing temperature.

3.3 In₂O₃ and In₂O₃:H TFT characteristics.

Figure 4 shows typical transfer characteristics of the TFTs with In₂O₃ and In₂O₃:H channels. All TFTs were fabricated using annealing in ambient air at 300 °C. The In₂O₃ TFT without H₂ introduction did not exhibit any switching (conductive behavior) because the In₂O₃ film was still in a degenerated state (Fig. 3b). By contrast, the In₂O₃:H TFT exhibited a switching with an extremely high μ_{FE} of 139.2 cm²V⁻¹s⁻¹, a subthreshold swing (SS) of 0.19 Vdec⁻¹, a threshold voltage (*V*_{th}) of 0.2 V. The obtained μ_{FE} value is comparable to the μ_{Hall} of epitaxial single-crystal In₂O₃ films (~160 cm²V⁻¹s⁻¹).[17] The resulting transfer performance of the SPC-prepared In₂O₃:H TFT was superior to that of previously reported oxide-based TFTs.[18]

Fig. 4. In_2O_3 and In_2O_3 :H TFT characteristics. Typical transfer characteristics of the TFTs with In_2O_3 and In_2O_3 :H channels annealed at 300 °C in ambient air.

Figure 5 shows the bright-field high-resolution transmission electron microscopy (HRTEM) image and selective area electron diffraction (SAED) pattern obtained from the SPC-prepared In_2O_3 :H TFT. A clear lattice image was observed over the entire thickness of the In_2O_3 :H channel. Moreover, there was a single crystal-like diffraction pattern in the SAED pattern, even in the thin layers, roughly at a distance of 5 nm from the SiO₂ gate insulator.

Fig. 5. Cross-sectional view of the SPC-prepared In_2O_3 :H TFT. HRTEM image and corresponding SAED pattern of the active layer of the TFT with In_2O_3 :H channel.

4 Conclusions

In this study, we demonstrate the high-performance polycrystalline In_2O_3 :H TFTs using a low-temperature SPC process. The In_2O_3 :H TFT exhibits an extremely high μ_{FE} of 139.2 cm²V⁻¹s⁻¹, an appropriate V_{th} of 0.2 V, and a small SS of 0.19 Vdec⁻¹. The hydrogen introduced during sputter deposition plays an important role in enlarging the grain size and decreasing the subgap defects in SPC-prepared In_2O_3 :H. The proposed method

does not require any additional expensive equipment and/or change in the conventional oxide TFT fabrication process. We believe that these SPC-grown In_2O_3 :H TFTs are promising candidates for use in future electronics applications.

References

- [1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," *Nature*, vol. 432, no. 7016, pp. 488-92 (2004).
- [2] H. Hosono, "How we made the IGZO transistor," *Nat Electron,* vol. 1, no. 7, pp. 428-428 (2018).
- [3] H. Hosono and H. Kumomi, Amorphous oxide semiconductors: IGZO and related materials for display and memory. Eds. Wiley: Hoboken, NJ (2022).
- [4] T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," *Npg Asia Materials*, vol. 2, no. 1, pp. 15-22 (2010).
- [5] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, "Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor," *Science*, vol. 300, no. 5623, pp. 1269-1272 (2003).
- [6] Y. S. Shiah *et al.*, "Mobility-stability trade-off in oxide thin-film transistors," *Nat Electron*, vol. 4, no. 11, pp. 800-807 (2021).
- [7] D. Koretomo, S. Hamada, M. Mori, Y. Magari, and M. Furuta, "Marked improvement in reliability of 150 degrees C processed IGZO thin-film transistors by applying hydrogenated IGZO as a channel material," *Applied Physics Express*, vol. 13, no. 7 (2020).
- [8] Dhananjay and C. W. Chu, "Realization of In2O3 thin film transistors through reactive evaporation process," *Applied Physics Letters*, vol. 91, no. 13 (2007).
- [9] T. Hirao *et al.*, "Novel top-gate zinc oxide thin-film transistors (ZnO TFTs) for AMLCDs," *Journal of the Society for Information Display*, vol. 15, no. 1, pp. 17-22 (2007).
- [10] R. E. Presley, C. L. Munsee, C. H. Park, D. Hong, J. F. Wager, and D. A. Keszler, "Tin oxide transparent thin-film transistors," *J Phys D Appl Phys*, vol. 37, no. 20, pp. 2810-2813 (2004).
- [11] S. Higashi, K. Ozaki, K. Sakamoto, Y. Kano, and T. Sameshima, "Electrical properties of excimer-laser-crystallized lightly doped polycrystalline silicon films," *Jpn J Appl Phys 2*, vol. 38, no. 8a, pp. L857-L860 (1999).
- [12] T. Koida, H. Fujiwara, and M. Kondo, "Hydrogendoped In2O3 as High-mobility Transparent Conductive Oxide," *Japanese Journal of Applied Physics*, vol. 46, no. No. 28, pp. L685-L687 (2007).
- [13] Y. Magari, T. Kataoka, W. Yeh, and M. Furuta, "Highmobility hydrogenated polycrystalline In2O3 (In2O3:H) thin-film transistors," *Nat Commun*, vol. 13, no. 1, p. 1078 (2022).
- [14] Y. Magari et al., "Record-High-Performance Hydrogenated In-Ga-Zn-O Flexible Schottky Diodes," ACS Appl Mater Interfaces, vol. 12, no. 42, pp. 47739-47746 (2020).

- [15] P. D. C. King *et al.*, "Shallow donor state of hydrogen in In2O3 and SnO2: Implications for conductivity in transparent conducting oxides," *Physical Review B*, vol. 80, no. 8 (2009).
- [16] N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, "Electrical transport, electrothermal transport, and effective electron mass in singlecrystalline In2O3 films," *Physical Review B*, vol. 88, no. 8 (2013).
- [17] R. L. Weiher, "Electrical Properties of Single Crystals of Indium Oxide," *Journal of Applied Physics*, vol. 33, no. 9, pp. 2834-& (1962).
- [18] S. Y. Lee, "Comprehensive Review on Amorphous Oxide Semiconductor Thin Film Transistor," *Transactions on Electrical and Electronic Materials*, vol. 21, no. 3, pp. 235-248 (2020).