
 

   

Impact of Cyber-Physical Systems on Research and 
Development of Semiconductor Devices  

Hiroshi Ikenoue1, Keita Katayama1, Yoshiaki Kakimoto1,2,  

Toshifumi Kikuchi1,3, Daisuke Nakamura1 

ikenoue.hiroshi.834@m.kyushu-u.ac.jp 
1 Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan. 

2 Department of Gigaphoton Next GLP, Kyushu University, Fukuoka, Japan. 
3 Department of TAMARI Industry, Kyushu University, Fukuoka, Japan. 

Keywords: cyber-physical systems (CPS), Deep learning, low-temperature polycrystalline silicon (LTPS), thin-film 
transistor (TFT), Laser annealing  

 
 
1. Introduction 

In the industrial field of semiconductors, process 
innovations are crucial for fabricating high-performance 
semiconductor devices. For example, the crystallization of 
amorphous silicon thin films by excimer laser annealing 
(ELA) enables high-performance smartphones in the 
display industry. Accomplishing these process innovations 
in the semiconductor field is vital for realizing Society 5.0 
(Society 5.0: Japan aims to achieve economic 
development and provide solutions to social issues 
through cyber-physical systems (CPSs)). 

The recent progress in CPSs, which connect 
semiconductor manufacturing systems, paves the way for 
accelerating the development of innovative semiconductor 
devices. 

To improve the acceleration of R&D by CPSs, it is 
important to develop semiconductor manufacturing 
systems for novel semiconductor device processes using 
CPSs such as deep learning. In this paper, we report on 
estimating the device characteristics of low-temperature 
polycrystalline silicon thin-film transistors (LTPS-TFTs) 
through deep learning. 

TFTs are used as switching and driving elements in 
display devices. LTPS-TFTs have attracted attention 
because of their low process temperature (~400 °C) and 
high carrier mobility (~100 cm2/Vs). A polysilicon film was 
formed by the ELA process. In the ELA process, the a-Si 
film melted, and the molten Si then began to cool and 
solidify as crystals, leading to alterations in the 
morphology of the Si film, such as the surface color and 
surface roughness. These surface changes correlate with 
the characteristics of the polysilicon films. The quality of 
the crystallized polysilicon Si was evaluated using optical 
inspection methods. Therefore, we attempted to 
quantitatively predict the mobility and gate threshold 
voltage (Vth) of the LTPS-TFT using deep learning from 
optical microscope images of the polysilicon film. 

Before performing deep learning, we acquired 
microscope images of a polysilicon film and field effect 
mobility and Vth as a dataset through the LTPS-TFT 

fabrication process. First, an a-Si film was deposited via 
LPCVD on a glass substrate. We then used the ELA 
method with various fluences to form polysilicon films. In 
addition, ELA with a laser intensity distribution was 
performed using optical masks to control the grain size 
of the grown crystal. After ELA, an optical microscope 
was used to capture the images of the laser-annealed 
polysilicon film. Subsequently, the TFT was fabricated 
using a conventional top-gate TFT fabrication process, 
the current-voltage characteristics were measured, and 
the field-effect mobility and Vth were calculated. With this 
dataset, we performed deep learning using pre-trained 
VGG16, a deep convolutional neural network (CNN), to 
classify images. During the training of the deep learning 
model, weight parameters were updated to reduce the 
mean square error (MSE) between the actual measured 
value and the predicted value (CNN output). 

 
2. Methodology 
2.1 TFT Fabrication 

The n-channel LTPS TFT is fabricated as follows. First, 
a-Si (100 nm) films were deposited onto a quartz 
substrate via low-pressure chemical vapor deposition 
(CVD) at 550 °C. Subsequently, the a-Si films were 
crystallized using ELA. After the poly-crystallization of 
the Si films, poly-Si films were defined by creating island 
patterns using photolithography and wet etching with a 
mixture of HF, HNO3, and H2O. A gate insulator SiO2 
(100 nm) film was deposited at 350 °C using microwave-
excited plasma-enhanced CVD. The gate electrode was 
fabricated by depositing a TiN (150 nm) film using 
reactive DC magnetron sputtering and patterned by wet 
etching (a mixture of HF, HNO3, and H2O). P+ ions at 
140 keV with a dose of 5 × 1015 cm−2 were implanted to 
form a self-aligned source/drain region, utilizing the gate 
electrode pattern as a mask, followed by activation 
annealing in N2 ambient at 550 °C for 1 h. Next, a 
dielectric film of SiO2 (150 nm) was deposited by 
employing atmospheric pressure CVD at 400 °C. The 
contact holes were opened by wet etching (HF solution). 
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A metallic Al contact was deposited using DC magnetron 
sputtering and patterned by wet etching (a mixture of 
H3PO4, CH3COOH, HNO3, and H2O). Finally, the TFT was 
annealed at 400 °C for 0.5 h under the forming gas (Ar/H2 

= 900/100 sccm). In this study, the length (L) and width 
(W) of the fabricated TFT  
channels were 20 μm and 30 μm, respectively. 
 
2.2 Deep learning 

A convolutional neural network (CNN), which accepts 
optical microscope images as input and produces mobility 
as the output, was used to estimate the mobility from the 
image. Optical microscope images were cropped, with the 
image of the area between the source and drain used as 
the input image, as shown in Figure 1. Ninety percent of 
the data was used as training data to train the network, 
with the remaining 10% used for validation purposes. The 
CNN was trained to minimize the mean squared error 
(MSE) using an ADAM optimizer [1]. To qualitatively 
understand which part of the image the CNN focuses on 
to estimate mobility, gradient-weighted class activation 
mapping (Grad-CAM) [2] was applied to the deepest layer 
of the CNN designed to solve the classification problem 
based on the magnitude of mobility. However, Grad-CAM 
is a system that can be used for classification problems 
but cannot be applied to regression problems.   

We developed gradient-weighted regression activation 
mapping (Grad-RAM) to determine which part of the image 
is the CNN in regression problems [3]. 
 
   

 
 
Fig. 1 Optical microscope image and cropped image of the input 
data 
 

In this experiment, an a-Si substrate with a film 
thickness of 100 nm was polycrystalline using a KrF 
excimer laser (wavelength of 248 nm). The laser fluence 
varied from 450 to 700 mJ/cm2. LTPS thin films were 
crystallized using intensity-controlled ELA, as reported in 
our previous study [4]. In this experiment, uniform square-
shaped grains in the size range of 1–2.5 μm were formed 
at the optimized laser fluence. Optical microscopy images, 
as shown in Figure 2, were obtained from the LTPS 
prepared under various conditions. Subsequently, a thin-
film transistor (TFT) device was manufactured. The field-

effect mobility was calculated by measuring the current-
voltage characteristics of the TFT devices. Deep learning 
was performed using LTPS images and field-effect 
mobility/threshold voltage datasets (480 sets). We 
performed deep learning using pre-trained VGG16, a 
convolutional neural network (CNN) architecture. During 
the training of the deep learning model, the weight 
parameters were updated to reduce the mean square 
error (MSE) between the actual measured value and the 
predicted value (CNN output). 

 
 

 
 
Fig. 2 Input data of optical microscope images and output data 
of field effect mobilities for deep learning. 
 
3. Results and discussion 

Figure 3 shows the relationship between the grain size 
and mobility of the LTPS-TFTs. For a projected dot 
interval of 1.0−2.5 μm, the actual grain size was the 
same as that of the projected dot interval. 

At dot array pitches of 3 μm and 4 μm, the variation in 
the formed grain size was significantly large; therefore, 
the variation in the field-effect mobility was also 
significant, consistent with the prediction of previous 
studies that the variation in mobility increases as the 
variation in grain size increases [5]. 
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Fig. 3 Experimental data of the field effect mobilities for various 
projected dot intervals.  
 

 

  
 

Fig..4 Predicted mobilities and Vth of LTPS-TFTs for validation 
data. (CNN: pre-trained VGG16) 

At a projected dot interval of 0.75 μm, the actual grain 
sizes were of different sizes, possibly due to the resolution 
of the lens. 

Figure 4 shows the relationship between measured and 
prediction values (CNN output). Regarding mobility, its 
root mean square percentage error (RMSPE) was 15.0 %. 
In contrast, for Vth, its RMSPE was 23.3 %. From Figure 
4 and microscope images, it was confirmed that TFT 
characteristics were predicted with the information of the 
grain size and position in the optical microscope images, 
and CNN extracted their features in the images during 
training. 

 

 
 

 
Fig. 5 GRAD-RAM images at various field effect mobilities.  
 

Figure 5 shows the GRAD-RAM images at various 
field-effect mobilities and the optical microscopy images 
corresponding to the respective GRAD-RAM images. In 
addition, Figure 5 shows the corresponding data points 
on a graph of the predicted deep-learning results. 

As shown in Figure 5, in  the low-mobility region, the 
pixel importance of the GRAD-RAM images does not 
focus on the crystal structure, but on the entire image, 
suggesting that mobility is estimated from the information 
of the entire image, such as the color of the film. In 
contrast, the  GRAD-RAM images of high mobility 
focus on periodic structures that indicate crystal 
structures. 
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4. Conclusion 
  In the industrial field of semiconductors, process 
innovations are crucial to fabricate high-performance 
semiconductor devices. For example, crystallization of 
amorphous silicon thin films by ELA enables the 
development of high-performance smartphones in the 
display industry. 
  To improve the acceleration of R&D by CPSs, it is 
important to develop semiconductor manufacturing 
systems for novel semiconductor device processes using 
CPSs such as deep learning.  In this paper, we reported 
on estimating the device characteristics of low-
temperature polycrystalline silicon thin-film transistors 
(LTPS-TFTs) through deep learning. 
  The quality of the crystallized polysilicon Si was 
evaluated using optical inspection methods. In addition, we 
attempted to quantitatively predict the mobility and gate 
threshold voltage of the LTPS-TFT using deep learning 
from optical microscope images of the polysilicon film. 
  RMSPE of the prediction mobilities was 15%, and the 
RMSPE of prediction Vth was 23.3%.  
  From the results of the GRAD-RAM analysis, in the low-
mobility region, the CNN pixel importance of the input 
images does not focus on the crystal structure, but on the 
entire image, suggesting that mobility is estimated from the 
information of the entire image, such as the color of the 
film. In contrast, the high-mobility GRAD-RAM images 
focused on the periodic structures of the LTPS films. 
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