Electric Field Thermopower Modulation Analyses of Effective Channel Thickness of Amorphous InGaO₃(ZnO)_m Thin Film Transistors

<u>Prashant Ghediya</u>^{1#}, Hui Yang^{1,2#}, Takashi Fujimoto³, Yuqiao Zhang^{4,5}, Yasutaka Matsuo¹, Yusaku Magari¹, and Hiromichi Ohta¹

prashantghediya@gmail.com, hiromichi.ohta@es.hokudai.ac.jp

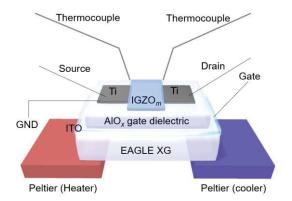
¹Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
² Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
³Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
⁴Institute of Quantum and Sustainable Technology, Jiangsu University, Zhenjiang 212013, China
⁵Foshan (Southern China) Institute for New Materials, Foshan 528200, China
Keywords: Thermopower modulation, Amorphous InGaO₃(ZnO)_m, Effective channel thickness.

ABSTRACT

Here, we analyzed the transistor characteristics of amorphous $InGaO_3(ZnO)_m$ thin film transistors (TFTs) by the electric field thermopower modulation, and found that the effective channel thickness of the TFTs varies from ~2 nm to ~28 nm depending on the m-value.

1 Introduction

In 2004, it has been demonstrated that a thin film transistor (TFT) using an amorphous transparent oxide semiconductor InGaZnO₄ (a-IGZO) as an active layer exhibits excellent transistor characteristics with a rather high field effect mobility ($\mu_{FE} \sim 7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), which is an order of magnitude higher than that of a-Si (~0.5 cm² V⁻¹ s⁻¹).^[1] After that, several display companies energetically developed and commercialized large-sized liquid crystal displays (LCDs) and organic light emitting diode displays (OLEDs) using IGZO-based TFTs as the backplane.^[2] Although IGZO-based TFTs are widely applied for the above purpose, μ_{FE} needs to increase because much higher-definition pixeled and wearable displays will be demanded in the future. Thus, alternate active materials that show much higher μ_{FE} need to be found.


In this study, we focused on amorphous InGaO₃(ZnO)_m with higher *m*-values (a-IGZO_m hereafter). It is known that crystalline IGZO_m has a layered structure composed of InO₂⁻ layer and GaO(ZnO)_m⁺ block alternately stack along the *c*-axis.^[3,4] Nomura *et al.* precisely studied residual carrier concentration (n) and Hall mobility (μ Hall) of the amorphous In-Ga-Zn-O system, and found that both n and μ Hall increase with increasing *m*.^[5] Orita *et al.* analyzed the conduction mechanism of a-IGZO_m films and concluded that Zn 4s orbitals dominantly contribute to electron conduction of a-IGZO_m with a large *m*-value.^[6] However, the relationship between transistor characteristics of a-IGZO_m-based TFTs and *m*-value has not been clarified so far.

To address this issue, we attempted the electric field thermopower modulation analyses [7-11] to a-IGZO_m TFTs. We measured the thermopower of a-IGZO_m TFTs during a

gate voltage application. We also measured the thermopower of IGZO_m films. Then, we compared the sheet carrier concentration (n_{2D}) of IGZO_m TFTs with the volume carrier concentration (n_{3D}) of IGZO_m films when both show the same thermopower. Here, we show that the effective channel thickness (n_{2D}/n_{3D}) varied from ~2 nm to ~28 nm depending on the *m*-value.

2 Experimental

We fabricated IGZO_{*m*}-based TFTs (bottom-gate, topcontact type) on an alkaline-free glass substrate (0.7 mm thick, Corning[®] EAGLE XG[®]) using the following procedure. First, a 106-nm-thick AlO_x film, which served as the gate insulator, was deposited by atomic layer deposition (ALD) on an ITO-coated EAGLE XG substrate. The dielectric permittivity of the AlO_x film was 8. Then, ~20-nm-thick IGZO_{*m*} film was deposited by PLD through a stencil mask. After that, the multilayer film was annealed at 350 °C in air for 5 min. Finally, Ti source/drain electrodes were evaporated.

Figure 1. Schematic illustration of the electric field thermopower modulation of IGZO_m **TFTs at room temperature.** The IGZO_m TFT is placed between two Peltier devices. During the gate voltage application, thermopower is measured by applying temperature difference between the source and drain electrodes.

Standard transistor characteristics and thermopower modulation analyses of the resultant TFTs were performed at room temperature in air (**Fig. 1**). Detail of the thermopower modulation analyses has been published elsewhere.^[7-11]

3 Results and Discussion

First, we fabricated IGZO_m (m = 1, 2, 3, 4, 5, 7, 9, 10, and 30) films with varied oxygen pressure during the PLD to control the carrier concentration. We then checked the films by X-ray diffraction (**Fig. 2**) and found that the IGZO_m films with $m \le 7$ were amorphous but the films with m > 7were polycrystalline, similar to that Orita *et al.* who reported that IGZO_m crystalizes even at room temperature when m > 5.^[6]

The optical bandgap (data not shown) gradually decreased with increasing *m*-value (3.25 eV for m = 1 and 3.15 eV for m = 5). This tendency is similar to that of crystalline IGZO_{*m*}.^[12] From these observations, we judged that a-IGZO_{*m*} (m = 1, 2, 3, 4, 5, 7, 9, and 30) films were successfully fabricated.

Then, we measured the Seebeck effect and Hall effect of the films. **Figure 3a** plots thermopower (*S*) as a function of volume carrier concentration (n_{3D}) of the resultant IGZO_m (m = 1, 2, 3, 4, 5, 7, 9, 10, and 30) films at room temperature in air. *S*-values are always negative confirming that the films are n-type semiconductors. The absolute value of *S* decreases with n_{3D} in all cases. Interestingly, all the plots are nearly located on a line that show the carrier effective mass (m^*) is 0.16 m_0 . This indicates that the *Z*n 4s orbital dominated conduction band bottom exhibits similar band dispersion to that of In 5s orbital dominated conduction band bottom.

On the other hand, clear tendency was not observed in

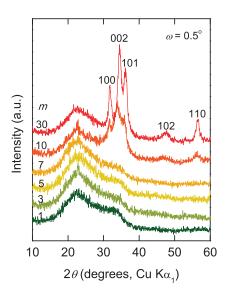


Figure 2. XRD patterns of the resultant IGZO_m films. When $m \le 7$, a halo of IGZO_m is seen at $2\theta \sim 34^\circ$, whereas sharp diffraction peaks appear when m > 7.

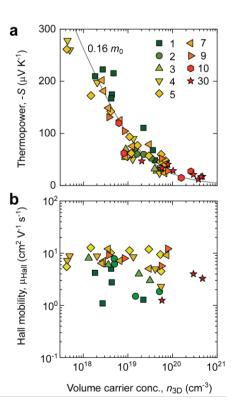


Figure 3. Electron transport properties of the a-IGZO_m (m = 1, 2, 3, 4, 5, 7, 9, and 30) films at room temperature. (a) Thermopower vs. volume carrier concentration, (b) Hall mobility vs. carrier concentration. A clear trend is seen in (a) whereas there is no clear trend in (b).

 μ_{Hall} as a function of n_{3D} (Fig. 3b). Since m^* of all IGZO_m films is similar, the difference in the observed μ_{Hall} is due to the difference in the carrier relaxation time (τ). Generally, τ strongly depends on the quality of the films. Thus, thermopower is a more reliable physical property to analyze the carrier transport properties than mobility.

Next, we fabricated IGZO_m TFTs and measured the transistor characteristics. **Figure 4** shows typical transfer characteristics of IGZO_m TFTs at room temperature. The channel length *L* was 100 µm and the channel width *W* was 400 µm. Drain voltage (*V*_d) of +5 V was applied in all cases. The on current gradually increases with *m* when $m \le 7$. However, when m > 7, the off current increases and the on current gradually decreases with *m*.

Figure 5 plots the field effect mobility (μ_{FE}) of the IGZO_m TFTs. When $m \le 7$, μ_{FE} gradually increased with m, whereas it dropped with m when m > 7. Highest μ_{FE} was ~12 cm² V⁻¹ s⁻¹ obtained when m = 7. Since crystallization of IGZO_m occurred when m > 7, origin of the low μ_{FE} of m = 10 and 30 would be the grain boundaries; carrier electrons are scattered at the grain boundaries. Finally, we measured thermopower of the TFT channel by applying various gate voltages. First, a constant V_g was applied to the TFT to accumulate carriers.

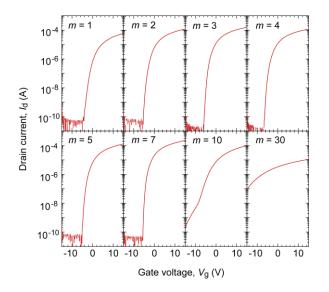


Figure 4. Typical transfer characteristics of IGZO_m TFTs at room temperature. ($L = 100 \ \mu m$, $W = 400 \ \mu m$, $V_d = +5 \ V$) The on current gradually increases with m when $m \le 7$. When m > 7, the off current increases and the on current gradually decreases with m.

Figure 5. Field effect mobility (μ_{FE}) of the IGZO_m TFTs. When $m \le 7$, μ_{FE} gradually increases with m, whereas it drops with m when m > 7. Highest μ_{FE} is ~12 cm² V⁻¹ s⁻¹ obtained when m = 7.

Then, we measured thermopower of the TFT channel by applying various gate voltages (V_g). First, a constant V_g was applied to the TFT to accumulate electron carriers. Then, *S* of the channel was measured during the V_g application. **Figure 6a** plots electric field modulated *S* as a function of n_{2D} . The overall change in |*S*| shows an upward trend when the n_{2D} is low (m = 1), and a decreasing tendency when the n_{2D} is high. The former is most likely due to the tail state around the conduction band bottom. The latter is a standard tendency. It should be noted that |*S*| increases as the *m*-value increases. Then, we compared the n_{2D} (**Fig. 6a**) with n_{3D} (**Fig. 3a**) at the same

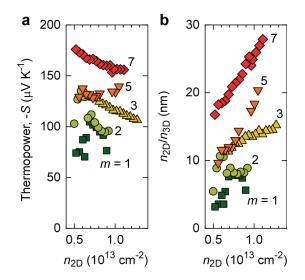


Figure 6. Electric field thermopower modulation analyses of the IGZO_m TFTs. (a) Thermopower and (b) effective thickness of a-IGZO_m TFTs as a function of n_{2D} . Note that effective thickness (n_{2D}/n_{3D}) varied from ~2 nm to ~28 nm depending on the *m*-value.

|S| (Fig. 6b). Interestingly, effective thickness (n_{2D}/n_{3D}) varied from ~2 nm to ~28 nm depending on the *m*-value. The overall tendency of n_{2D}/n_{3D} is increases with *m*-value. These results suggest that increase of effective channel thickness of IGZO_{*m*} would enhance *T*. This information may be useful to further improve IGZO_{*m*}-TFT characteristics in the future.

4 Summary

In this study, we attempted the electric field thermopower modulation analyses to clarify the relationship between transistor characteristics of IGZO_m based TFTs and *m*-value. We found that the effective channel thickness of the IGZO_m thin film transistors varied from ~2 nm to ~28 nm depending on the *m*-value. The overall tendency of n_{2D}/n_{3D} is first decreases with *m*-value and then increases with *m*-value. The increase of effective channel thickness of IGZO_m would enhance τ . This information may be useful to improve IGZO_m thin film transistor characteristics in the future.

References

- H. Hosono, "How we made the IGZO transistor", Nat. Electron. 1, 428 (2018).
- [2] K. Nomura, H. Ohta, A. Takagi, T, Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature 432, 488 (2004).
- [3] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, "Thin film transistor fabricated in

single-crystalline transparent oxide semiconductor", Science 300, 1269 (2003).

- [4] H. Ohta, K. Nomura, M. Orita, M. Hirano, K. Ueda, T. Suzuki, Y. Ikuhara, and H. Hosono, "Single-crystalline films of InGaO₃(ZnO)_m (m = integer) homologous phase grown by reactive solid-phase epitaxy", Adv. Funct. Mater. 13, 139 (2003).
- [5] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors", Jpn. J. Appl. Phys. 45, 4303 (2006).
- [6] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, "Amorphous transparent conductive oxide InGaO₃(ZnO)_m (m < 4): a Zn 4s Conductor", Phil. Mag. 81, 501 (2001).
- [7] H. Ohta, Y. Masuoka, R. Asahi, T. Kato, Y. Ikuhara, K. Nomura, and H. Hosono, "Field-modulated thermopower in a SrTiO₃-based field-effect transistor with amorphous 12CaO·7Al₂O₃ glass gate insulator", Appl. Phys. Lett. 95, 113505 (2009).
- [8] H. Koide, Y. Nagao, K. Koumoto, Y. Takasaki, T. Umemura, T. Kato, Y. Ikuhara, and H. Ohta, "Electric field modulation of thermopower for transparent amorphous oxide thin film transistors", Appl. Phys. Lett. 97, 182105 (2010).

- [9] H. Ohta, S.W. Kim, S. Kaneki, A. Yamamoto, and T. Hashizume, "High thermoelectric power factor of high-mobility two-dimensional electron gas", Adv. Sci. 4, 1700696 (2017).
- [10] A. V. Sanchela, M. Wei, H. J. Cho, and H. Ohta, "Thermopower modulation clarification of the operating mechanism in wide bandgap BaSnO₃-SrSnO₃ solid-solution based thin film transistors", Small 15, 1805394 (2019).
- [11] D. Liang, Y. Zhang, H.J. Cho, and H. Ohta, "Electric field thermopower modulation analyses of the operation mechanism of transparent amorphous SnO₂ thin-film transistor", Appl. Phys. Lett. 116, 143503 (2020).
- [12] S. Préaud, C. Byl, F. Brisset, and D. Berardan, "SPS-assisted synthesis of InGaO₃(ZnO)_m ceramics, and influence of m on the band gap and the thermal conductivity", J. Am. Ceram. Soc. 103, 3030 (2020).