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ABSTRACT 
In this paper, a cost-effective burn-in compensation 

method based on optical imaging is proposed. A deep 
convolutional networks using the accumulated detail layer 
as a reduced reference is applied to the captured images. 
Experimental results show that the proposed method 
reconstructs burn-in details effectively to be followed by 
multi-unit compensation. 

1 Introduction 
Despite advances in organic materials and 

manufacturing technologies, lifetime degradation still 
remains a technical barrier in organic light emitting diode 
(OLED) display application. The luminance efficiency of an 
OLED decreases with time of use. The non-uniform 
degradation recognized as a burn-in phenomenon occurs 
according to the amount of accumulated current density 
that is non-uniformly driven to each pixel of the display 
panel.  

Data-counting methods [1] have been developed to 
alleviate the lifetime issue of mobile displays. The data-
counting method is to predict the degree of luminance 
degradation from the accumulated image data based on 
OLED degradation model which defines relationship 
between the luminance degradation and elapsed time. 
The accuracy of the degradation model is directly related 
to the compensation performance. In [2], a tracing-based 
prediction method using different model parameters for 
different gray levels was proposed to accurately reflect 
material properties. Although data counting method can be 
a method of delaying the initial burn-in recognition, errors 
in model prediction are also accumulated due to the actual 
usage environment such as operating temperature and 
driving method and the cause of panel deviation.  

After burn-in has been recognized, data counting alone 
cannot compensate for burn-in, even though it uses a lot 
of memory. The feedback information about degradation 
distribution, such as external sensing [3] or optical imaging, 
should be used to complement the open loop system. 
However, there are technical difficulties to acquire 
accurate optical imaging data without Moire under precise 
focusing condition. To deal with the Moire problem, a 
specialized equipment with high-resolution camera should 
be used [4]. An alternative is to apply optical blurring, but 
it will cause the detail loss affecting compensation 

performance. 
In this paper, we propose a cost-effective burn-in 

compensation method based on optical imaging. The 
captured images which include degradation distribution 
in low resolution are processed to represent burn-in 
details using deep convolutional networks with the 
accumulated detail layer as a reduced reference. The 
multiunit compensation data is configured to have the 
sub-pixel wise compensation data for the burn-in detail 
region. Therefore, in order to preserve the details, 
accumulation is performed on the detail layer as a robust 
feature rather than input gray value. Experimental results 
show that the compensation data acquired by a low-end 
camera can be improved to include detail component 
using the proposed network with the accumulated 
feature. The required memory to accumulate feature is 
about 1/6 of sub-pixel wise accumulation with 
degradation model. 
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Fig. 1 Overall block diagram of burn-in 
compensation on the mobile system proposed 

in [5] (a) and in this paper (b) 
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2 Proposed Method 
We focus on the mobile system, of which a display 

driver integrated circuits (DDI) receives the multi-unit 
compensation map from an application processor (AP) 
and compensates burn-in with small internal dedicated 
memory. As shown in Fig. 1(a), we had proposed the 
mobile system with two main functional blocks, 
accumulator and compensator located in AP and DDI, 
respectively [5]. Multi-unit compensation map generator is 
to reduce the amount of accumulated usage data without 
loss of compensation performance. Fig. 2 illustrates data 
map configuration. Accumulated data in Fig. 2(a) can be 
reduced by sampling spatially and reducing temporal bit 
precision for compensation as shown in Fig. 2(c). 

 

(a) (b)  (c) 
Fig. 2 The illustration of data map configuration. (a) 

accumulation map, (b) detail layer accumulation 
map (c) multi-unit compensation map  

 
However, the accumulated data for all pixels is required 

to generate multi-unit compensation map. Although a large 
memory is used, it is difficult to represent actual panel 
state due to mismatch of empirical OLED degradation 
model. Therefore, we propose the mobile system in Fig. 
1(b) that accumulates burn-in details necessary for multi-
unit compensation while using the imaging data that 
reflects actual panel state as a base layer. The deep 
convolution networks is to reconstruct edge information 
using detail layer accumulation map as shown in Fig. 2(b). 

2.1 Detail Layer Accumulator 
The multi-unit map is generated to allocate more 

memories for burn-in details through localization and 
classification process. To detect burn-in details, the detail 
layer is extracted from a sub-pixel wise compensation map 
by decomposition using the initial 4x4 single-unit map as 
the base layer. The detail layer,  represents errors 
after 4x4 single-unit compensation and has higher spatial 
frequency components than the sampling frequency. 

 
            (1) 

 

where  is NxN single-unit compensation map. 
Since the multi-unit map is generated based on the 

detail layer, we focused on that the accumulation of the 
detail layer can be used as an edge guidance map 
effectively while using less memory. Since the detail 
layer data is a differential component, the accumulated 
data can be reduced. Also, edge location is a robust 
feature that is invariant with model accuracy. Therefore, 
detail layer accumulation does not require OLED 
degradation model to convert input gray to degradation 
value and accumulated degradation value to degraded 
luminance ratio. Detail layer accumulation is simplified 
using input gray data and adjusting binarization as 
follows. 

 

(2) 
 
where  is NxN averaged input data,  is a 
threshold value for binarization. The required memory 
can be reduced by about 1/6. 

2.2 Burn-in Details Reconstruction Network 
Burn-in Details Reconstruction Network (BDRNET) is 

proposed to generate a sub-pixel wise burn-in 
compensation data from the captured image using easily 
accessible devices such as smart phone. In the image, 
there are detail loss due to optical blur and performance 
deviations through camera sensors and post image 
signal processing. The target of BDRNET is the imaging 
result from a specialized optical equipment.  

We are motivated by the previous work [6] which 
improves low-quality smartphone captured images to 
DLSR-quality through the deep convolutional network. In 
[6], a composite of perception loss and GAN network 
was applied to emphasize the perception quality. The 
discriminator CNN was used with binary cross entropy 
loss function for measuring texture quality. However, 
these are not suitable for BDRNET to acquire accurate 
optical information of target image in unit of pixel. 
Therefore, BDRNET has been modified to be suitable for 
burn-in details reconstruction.  

Fig. 3 shows the overall architecture of the proposed 
BDRNET. Given a captured image which includes 
luminance degradation status, the target of the network 
is to reconstruct details in pixel unit. The network has an 
edge guidance image [7], accumulated detail layer, for 
distinguishing the burn-in characteristic and the optical 
characteristic as an additional input channel. The 
network is mainly composed of 12 CNN layers with 2 
input channels and 1 output channel. We use 4 residual 
blocks which consist of two layers with kernels of size 
3x3 and 8 channels.  
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Fig. 3. The overall architecture of BDRNET 

 
The enhanced image should be matched to the target 

image in terms of pixel to pixel difference. Pixel loss is 
defined as follows. 

 
            (3) 

where X and Y are the enhanced image and the target 
image, respectively. However, applying the pixel loss 
function to every pixel negligibly reflects the significant 
detail loss. Burn-in detail region accounts for a small 
portion of the total pixel, which is the basic assumption of 
multi-unit compensation. To keep details, detail loss 
function is added along with pixel loss. 
 

            (4) 
where   is the kernel for LoG filter. 

Total loss is defined as a weighted sum of pixel loss 
and detail loss. The weight coefficient was determined 
empirically. 

 
            (5) 

 
3 Experiments 

BDRNET should be trained with a large database 
based on a data-driven approach. However, it is 
physically difficult to obtain different types of burn-in 
occurred panels through degradation in a controlled 
environment on different output images. To generate the 
data set, a degradation model-based simulator was used 
to generate the accumulated data and the resulting 
degradation map for all the video sequences.  

Fig. 4 shows an example of paired data set generated 
through simulation, as color map images for visual 
convenience. The simulated degradation map and detail 
layer accumulated map is shown in Fig. 4(a) and Fig. 4(b), 
respectively. For the post-capture, optical imaging data 
include error of the degradation model and optical blurring 
due to imaging device. To contain these factors, a certain 
gain map assuming the error map and a low pass filter to 

make optical blurring is applied to the degradation map, 
as shown in Fig. 4(c). Given the simulated optical imaging 
data and the detail layer accumulated map, BDRNET is 
trained to produce the target image, as shown in Fig. 4(d).  

We acquired 100 video sequences by screen 
recording to reflect actual smartphone usage including 
game, video, navigation, home screen and text. The 
network was trained with extracted patches that contain 
many details.   

 

  
(a) (b) 

  
(c) (d) 

Fig. 4 Example of paired data set (a) simulated 
degradation map based on degradation model, 
(b) detail layer accumulated map, (c) simulated 

optical imaging data, (d) ground truth  
  

C
on

v 
3x

3x
8

C
on

v 
3x

3x
8

block 1

E
nh

an
ce

d 
im

ag
e

b
2

b
3

b
4

C
on

v 
9x

9x
3

 

Lo
w

 q
ua

lit
y

ca
pt

ur
ed

 im
ag

e

A
cc

um
ul

at
ed

de
ta

il 
la

ye
r

C
on

v 
9x

9x
3

C
on

v 
9x

9x
2

C
on

v 
9x

9x
2

M
er

ge
d 

in
pu

t l
ay

er

IDW ’22       1014



 

   

TTable 1. PSNR and SSIM result 
Method Video Navigation Text Average 

Accumulation Post-capture Edge reconstruction PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Full reference - - 17.216 0.983 18.445 0.976 18.828 0.977 18.163 0.979 

- O - 42.360 0.989 35.930 0.957 39.850 0.964 39.380 0.970 

Full reference O Guided filter 45.937 0.996 40.423 0.991 43.916 0.987 43.426 0.991 

No reference O 

Proposed network 

46.640 0.992 43.140 0.984 45.190 0.982 44.990 0.986 

Reduced reference  O 47.020 0.994 44.660 0.990 45.920 0.988 45.867 0.991 

Full reference O 49.420 0.999 50.590 0.999 49.680 0.998 49.897 0.998 

 
Table 1 shows PSNR and SSIM results on test images. 

We compare with cases according to accumulation 
method, capture or not, and edge reconstruction method. 
The guided filter [8] can transfer the structures of the 
guidance image. It is shown that the guided filter can take 
advantage of the captured image characteristics as a 
base layer and the sub-pixel accumulated image 
characteristic as a detail layer. The proposed network can 
be configured to have input guidance image, such as the 
sub-pixel accumulated image (full reference) and the 
accumulated detail layer image (reduced reference), or 
no guidance image (no reference). 

The proposed network with no reference structure 
shows better performance than guided filter in terms of 
PSNR. However, it has limitation in edge reconstruction, 
which results in worse performance compared to guided 
filter in terms of SSIM. The proposed network using 
accumulated detail layer as the reduced reference can 
enhance burn-in detail information. As more guidance 
information is used, the network can produce the output 
image more close to the target image. The proposed 
mobile system, including detail layer accumulation and 
the network, can effectively generate sub-pixel based 
multi-unit compensation data. 

Since the proposed system aims at effective post 
compensation, there is a limitation in that it cannot delay 
initial burn-in recognition. When sub-pixel accumulation is 
available in AP system, the proposed network can 
support post compensation and accumulated data 
adjustment with easily accessible imaging device, such 
as smartphone.  

4 Conclusions 
In this paper, we present a cost-effective burn-in 

compensation method based on optical imaging. The 
deep convolutional network is proposed to reconstruct 
burn-in details in captured image to be followed by multi-
unit compensation. The results show that the proposed 
network can be effective using detail layer accumulation 
without degradation model. It works as edge guidance to 
distinguish burn-in characteristic and the optical 
characteristic. 
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