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ABSTRACT 

Recently, computational lensless imaging had been 
making progress with the evolution of artificial neural 
networks. Nonetheless, generative models for image 
reconstruction inherit challenge due to its ill-posed nature. 
We proposed a deep neural network based lensless 
imaging system by optimizing perceptual loss exclusively 
to end-to-end reconstruct images conforming human 
preference. 

1 Introduction 
Computational lensless imaging system, conventional 

lens set is replaced by other optical media, has becoming 
more promising due to the rapid progress in computational 
power and algorithm. Typically, a sensor receives an 
intermediate measurement either phase or intensity 
modulated by an engineered optical component from a 
scene. Then a purpose-built algorithm is applied to 
reconstruct the scene through the measurement. Coded 
aperture imaging, inspired by pinhole array, was originally 
developed for X-ray or gamma ray applications based on 
ray optical model [1]. In recent years, coded aperture 
imaging is extended toward visible light with specific 
purposes, such as compact form factor. Certainly, cutting 
edge computational techniques play a crucial role for such 
configuration [2]. Mathematically, the imaging formation 
can be represented as a forward model 

 
where  denotes the object,  denotes the lensless 
imager and  denotes the intermediate image. To retrieve 
the original information, it involves an ill-posed inverse 
problem. Conventionally, it is done by solving as a 
Tikhonov functional [3] 

,  
where  denotes the norm and  is the 
regularization term to make the estimation  matching the 
prior knowledge. However, evaluating inversion directly 
has drawbacks that it is very sensitive to noise perturbation 
and a calibration procedure is usually required, result in 
unpleasant reconstruction quality for real world 
applications. Such challenges have been much improved 
since the introduction of deep neural networks (DNNs) for 
scene retrieval. Then the reconstruction  is generated by 

the neural network , which can be written as 
 

Many works have demonstrated that inversions modeled 
by DNNs can attain relative better visual fidelity [4]–[9]. 
Nevertheless, some good results were obtained under 
some circumstances, for example, trained models were 
only useable for specific scenes due to the characteristic 
of data driven methods. Some of these studies tried to 
improve model generality by training many natural 
scenes with prior knowledges or regularizations, which 
was effective but introduced more hyperparameters. 
This made DNNs harder for training and fine tuning. 

In this work, we proposed a coded mask based 
lensless imaging system, combining with a DNN to 
restore scenes from intermediate measurements. We 
used natural scenes to train the model for system 
generality as well. In contrast, we aimed to minimize 
perceptual loss exclusively, where perceptual loss 
measures the human perceptual similarity between 
images. Although we optimized single objective, we 
could achieve good perceptual quality, and had an 
advantage of reducing hyperparameters significantly. 
We also designed to train the model with end-to-end 
manner, which made our system more feasible for real 
time applications. 

2 Method 

2.1 Coded Mask Lensless Imager 
We utilized a coded mask as lensless imager for this 

research, where the intensity modulation was performed 
through the transfer matrix . For a separable coded 
mask, the imaging formation can be described as 

 
where  is 2-dimensional scene,  is 2-dimensional 
measurement,  and  are Toeplitz matrices 
separated from . Each element of matrices is 
determined by encoding scheme , which can 
be written as  

 

In this study, we employed the encoding vector from 
DeWeert’s work [10], which can be represented as 
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2.2 Network Architecture 
Our proposed network architecture is shown in Fig. 1, 

which is inspired by U-Net architecture. U-Net was 
originally developed for image segmentation [11], but 
many researches had demonstrated that it is effective for 
image reconstruction tasks as well [4], [5], [8], [9], [12]. The 
key characteristic associated with U-Net is to introduced 
contracting path which concatenates features between 
layers. Such concatenations make rear layers can reuse 
features learned by fore layers, which improves overall 
performance. For improving reconstruction quality, we 
made some modifications to the original U-Net. We 
replaced convolution layers with residual blocks (ResBlock 
shown in Fig. 2) inspired by residual neural network and 
replaced max pooling layers with strided convolution 
layers for down sampling, which had been applied to many 
restoration tasks [13]–[15]. 

Classically, pixel wise loss functions like L1 or L2 loss, 
are chosen as optimization objective. But, it was shown 
that model tends to generate more burry reconstructions 
[13]. Instead, we chose perceptual loss, which measures 
perceptual similarity between images, as our optimization 
target. Perceptual loss had been introduced for image 
reconstruction works [4], [13], [15], where it is defined as 
the difference on feature maps of the pretrained VGG16 
network [16]. The original loss function is written as L2 
distance 

 

where  is the  convolutional layer of the VGG16 and 
 is the shape of . Instead of L2 distance, we used 

Charbonnier loss to evaluate the perceptual loss, where it 
is a stable modification of L1 loss [17]. Charbonnier loss is 
defined as 

Charbonnier loss  

where  is a constant. Then the objective 
function to be minimized is 

 

 

 

 
3 Experiment and result 

The experimental setup for the proposed system is 
shown in Fig. 3, where the coded mask with the width of 

 mm was placed in front of the sensor at image 
distance  cm, and the distance between the 
mask and the monitor  cm. We employed 
Flickr2K dataset for training and DIV2K dataset for 
testing [18], [19], where each scene was rendered by a 
commercial display. The data augmentation with 
horizontal and vertical flipping was applied on training set, 

Convolution layer

Batch normalization

ReLU

Convolution layer

Batch normalization

Fig. 2 ResBlock 
A ResBlock consists of convolution layers, a ReLU 
activation function, batch normalization layers and a 
skip connection, where  is the output for  layer. 

ResBlock

transposed convolution

concatenate

convolution with stride

convolution

Tanh

Fig. 1 Network architecture.  
The network is composed of ResBlocks (green block), concatenations (yellow arrow), down sampling layers (orange 
block), up sampling layers (blue block) and a convolution layer (gray block) for output, where  in this work. 
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thus leading to 7950 image pairs. A CMOS sensor (FLIR 
BFS-U3-70S7C-C) was employed to capture the 
intermediate images, afterward each measurement was 
cropped and resize to the resolution  for the 
model input. The network was trained to minimize feature 
loss at the layer “relu2_2” using Adam optimizer for 39800 
iterations (100 epochs) [20], with the batch size 20 and 

 learning rate during training. 

 

 
Because we optimized the reconstructions via 

perceptual loss, conventional model-based metrics such 
as PSNR or SSIM were no longer suitable. Here we 
applied another metric, Learned Perceptual Image Patch 
Similarity  (LPIPS), where LPIPS  calculates the 
perceptual similarity between images [21]. Some 
reconstruction samples for testing data are shown in Fig. 
4, where smaller LPIPS means high similarity through the 
human perception. 

4 Conclusions 
As the result, unlike the conventional coded mask 

scheme with necessity of estimated kernel function as 
the priors, we developed an end-to-end trained DNN 
through the perceptual loss function. Our model only 
minimized single perceptual loss without other 
regularization terms, which reduced the efforts for fine 
tuning many hyperparameters. The lensless 
configuration has an extreme compact form factor, which 
ease the constraints cause by the conventional lens-
based imaging system accordingly. 
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