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ABSTRACT 
This study proposes a PBR (physically based rendering) 

texture capturing system using CNN (convolutional neural 
network). To obtain training data, we built a virtual 
capturing system in computer graphics environment. The 
final trained CNN was able to generate a set of PBR 
texture after inputting 4 photos of different lighting 
conditions. 

1 Introduce 
Simulation of physical reflection on an object surface 

plays a major role in CG (computer graphics) field. The 
BRDF (bidirectional reflectance distribution function) 
defines the reflectance of non-transparent objects at every 
viewing angle and light direction. For complex materials, 
such as woods, fabrics, rusty metal, etc., the BRDF would 
suffer from unequal estimation in different surface 
positions. Instead, SVBRDF (spatially varying BRDF) 
provides various reflection properties which are usually 
difficult to obtain. PBR involves complex reflection models 
and it comprises textures as well as base color image, 
normal map, and roughness map, etc., to achieve 
SVBRDF. Nowadays, the commonly used reflection model 
of SVBRDF is based on GGX model [1]. In most situations, 
this approximate method can generate realistic 
appearance as SVBRDF can do. 

The traditional way to obtain the PBR textures in real 
world is calculating the reflection properties based on 
SVBRDF model. Ward [2] designed a gonio reflectometer 
to capture the BRDF of objects. It measured the reflection 
light intensity in every incident and observation directions. 
This procedure is time consuming and a gonio 
reflectometer is difficult to build in practice. Today, the 
learning-based method is used in many application fields 
with outstanding performance. There are several studies 
utilizing the deep learning method to capture PBR texture. 
For example, Deschaintre [3] used a cellphone to capture 
different light condition photos of an object and used CNN 
to generate the PBR Textures. But for obtaining training 
data, it is still a difficult issue particularly for capturing the 
PBR textures from the real world. In this study, we present 
a dataset generating method using computer graphics 
technique, and train a deep learning model with these data. 
The final result shows that it is able to capture PBR 
textures in the real world. 

2 Experiment 
The pipeline of our proposed PBR capturing system is 

shown in Fig. 1. The input data are 4 photos, which have 
different lighting directions from right, top, left and bottom 
directions. These 4 photos will be stacked along the third 
dimension as the input for next stage. The stacked 
images are then fed into the approximation process and 
U-net model, respectively. The final result is the sum of 
the approximation result and the output of U-net. The 
two-way process is a residual learning trick from the 
image transform concept of deep learning like style 
transfer and super resolution, etc. In other words, our 
model focuses on generating the residual of final the 
textures image, instead of the actual content of an entire 
image. 

 
Fig. 1 The pipeline of our PBR texture generator 

 

2.1 Dataset 
We decide to train our model with three types of 

texture which are base color, roughness and normal map. 
These textures play a major role in realistic rendering. 
We collected 93 high resolution PBR textures (greater 
than 10242 pixels and under CC0 license) from the 
internet. To evaluate our model more comprehensively, 
12 materials have been chosen as the test set, which 
contain the common materials in the real world, such as 
wood, metal, fabric, dirt and stone. We then crop each 
material image into 9 equal parts and resize them to 
square images of 2562 pixels via Lanczos4 interpolation. 
Finally, we have 729 sets of data for training and 108 
sets for testing. 

To obtain the input of training data, we construct a 
virtual capturing system by using a  open software 
named Blender. The layout of our configuration is shown 
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in Fig. 2. 
The sample in Fig. 2 is a square plane wrapped with 

PBR texture. The camera is set right above the sample 
and 4 light bulbs are surrounded the camera. The mask 
with a square hole is used to identify the specific 
measurement area. 

 

 
Fig. 2 The configuration of our virtual capturing 

system. 
 

Fig. 3 shows one set of training data which are 
rendered by the virtual camera in Fig. 2. In Fig. 3, A, B, C 
and D are the images used as input; E, F and G are those 
as the ground truth of output. As a result, we can train our 
U-net to learn how the PBR texture is generated by these 
4 lighting conditions photos.  

 

Fig. 3 One set of training data. (A), (B), (C) and 
(D): photos with light from 0 , 90 , 180 , and 270

; (E): base color map; (F): roughness map; (G): 
normal map, (H): render example using (E), (F) 

and (G). 
 

2.2 Approximation Process 
Three different textures have their own approximation 

method to generate “rough” textures. In this part, we will 

discuss how we implement each method. For clarity, we 
use Ir, It, Il, and Ib to denote input images with light from 
right, top, left, and bottom, and I refers to the all 4 input 
images, Ab, Ar, and An as the rough texture of base color, 
roughness, and normal vector. 

For base color approximation, we simply calculate the 
mean value of 4 input images by pixel, and use this mean 
image as the rough base color texture. The calculation is 
showed in Eq. 1. =       (1) 

The roughness in CG is relative to the microstructure 
of an object surface. The bigger roughness means there 
is a lot of micro geometry in the surface. When a light ray 
hits a rough surface, it will bounce to every angle out 
from the reflection point. According to this phenomenon, 
if the range of lightness in 4 different lighting conditions 
is large, it means the reflected light can only be observed 
at specific viewing angle, and the roughness might be 
low. On the other hand, if the range of lightness is small, 
it means the reflection lights can be observed at many 
viewing angles, so the roughness is relatively high. 

We use Eq. 2 to express this relation between 
roughness and the variance of lightness of input images. 
This equation is not based on rigorous experiment, but 
for residual training purpose, this approximation is 
acceptable. = 1 (1 ) [ ( ) ( )]          (2) 
L in Eq. 2 is the 4 images with only lightness 

component, and the difference of maximum and 
minimum stands for the range of lightness each pixel. 
This range of lightness is inversely proportional to the 
roughness. The Nz is the z component of the normal 
vector at each pixel that has a range from 0 to 1. Nz can 
be obtained from Eqs. 3-6, which will be discussed later. 
According to Lambertian reflection, if the direction of the 
normal vector is close to the +z direction more, the 
lightness observed in same position with lights from 
same polar angle will have lower variance. So, we use 1 
- Nz as a weighting factor to fit this property.  

In Lambertian reflection condition, if the light direction 
is closer to the normal vector of the point, the lightness 
would be higher. Based on the photometric method, we 
can use this phenomenon to calculate the x and y 
components by simply substrate lightness value of pixels 
on two horizontal images (Ir, Il) and two vertical images 
(It, Ib). But we cannot use the same calculation to get the 
z component. We simply set the z component to the 
constant value 0.5, then scale the x, y and z values to be 
a normal vector. The whole calculation is shown in Eqs. 
3-6. 
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=          (3) =          (4) 
= 0.5                (5) 

=  [ ] =            (6) 

 

2.3 Architecture of model 
Our model is based on U-net architecture which is 

Ronneberger’s contribution [4], because it has the ability 
to generate image data with multiple levels of detail. U-net 
model has 2 paths – down sampling (hereinafter called 
DS) and up sampling (hereinafter called US). The input 
image data first are compressed to a low resolution feature 
map by DS process, then expanded to original resolution 
by US process. Our U-net contains 5 stages, the resolution 
of each stage is respectively 2562, 1282, 642, 322, and 322; 
and the depth of each stage is 64, 128, 256, 512, and 1024. 
Each stage has 3 Resnet blocks with batch normalization, 
and each mirror block pair in DS and US has skipped 
connection between them. 

The role of DS is to extract the features of the input 
image. By contrast, US reconstructs the final output 
residuals of textures. If the extracted-features have 
enough information, all types of textures are able to be 
reconstructed by this features. So, we use the same US to 
extract the universal features and reconstruct the different 
types of texture by individual US. The benefit of this 
approach is that the size of the whole model is smaller than 
the one which has individual US and DS for different types 
of textures with not far-off performance in experiment. In 
addition, the time on training and inference are as less as 
a result of the less calculation. 

 

2.4 Training processing 
In training phase, we transformed the input data and the 

target base color texture into CIELAB color space, 
because minimizing the mean square error (MSE) of 
output and target data in CIELAB color space is equal to 

etween them, the final visual 
appearance might be much closer to the target compare 
to the one trained in sRGB color space. After the color 

from [0, 255] to [-1, 1]. For the targets of roughness and 
normal textures, we simply mapped their range to [-1, 1]. 

We use the mean square error between the 
synthesized textures and target textures as the loss 
function, and the Adam optimizer has been chosen to train 

set to 0.9 
and 0.999, and the learning rate is set to 0.001. 

 

3 Result 
We had chosen 12 materials to evaluate our model. 

Fig. 4 shows the PSNR values of the testing dataset. 
The yellow lines are for the approximated result, and the 
blue lines are for the final result. The averaged PSNRs 
are shown in Table 1. Over all, the final results which are 
augmented by our deep learning model are better than 
the approximated one. 

Despite our model can generate fine base color and 
normal textures, it doesn’t perform as well in generating 
roughness maps. The averaged PSNRs of final 
roughness textures are only reach 14.87, this causes 
huge visual difference to the ground truth roughness 
texture. But for rendering, the impact of roughness is not 
as much as base color or normal, so the rendering result 
may still look realistic. 

 

 
Fig. 4 PSNR of the 12 testing samples. 

 
Table. 1 Averaged PSNRs of the 12 testing samples. 

result \ type Base color Roughness Normal 
Approximate 19.42 14.00 24.74 

Final 32.86 14.87 28.02 
 

In addition, we captured photos of 6 materials in the 
real world to test the practicality of our deep learning 
model. The samples we chose is according to 
descending order, says 2 different fabrics, smooth and 
rough wood and 2 different stone look tiles, are shown 
with rendering result in Fig. 5. 
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Fig. 5 Real photo testing. Left: the original photos 

with the right side lighting; right: render results 
of the synthesized textures. 

 
The rendering results show that the synthetic textures 

produced by the proposed method are able to reproduce 
the visual appearance of these real world materials. But it 
still has insufficiency which should be improved in the 
future. For example, sample C and D are the different 
sides of the same piece of wood, but one had been fine 
sanded and waxed, another is wood with originally rough 
surfaces. The ideal roughness texture might reproduce 
this difference, but the synthesized textures seem unable 
to do the same effect. 

The reason for getting inferior performance at 
roughness might be the lack of information caused by only 
using 4 orientations of lights on input data. We think this is 
because a complex material has various microstructures 
on different surface points, and that means more lights 
with different polar angles are required. 

 

4 Conclusions 
This study utilizes U-net deep learning model to 

generate PBR textures from photos with different lighting 
conditions. The current result shows that it has potential to 
generate accurate textures, such as layers of base color 
and normal. 

Furthermore, we use these virtual training data to 
generate PBR textures. This procedure has 2 benefits. 
First, we can still obtain the training data with different 
system configurations. Secondly, we don’t need to use a 
real instrument like a gonio reflectometer to capture the 
ground truth data. These features make our PBR texture 
generator much easier and more flexible to produce 
realistic effects. 

Our model was trained using only 81 materials in this 
study. With the addition of more materials and lighting 
conditions, a more powerful and robust model can be 
trained. On the basis of this study, we are also developing 
a PBR texture capture system that does not require more 

than a single shot in the future. 
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