
PBR Textures Capture by CNN Trained in Virtual 3D Scene
Chih Yang, Tzung-Han Lin

zemtice@gmail.com
National Taiwan University of Science and Technology, Taipei 10607, Taiwan

Keywords: Physically based rendering, BRDF, Deep learning, CNN

ABSTRACT
This study proposes a PBR (physically based rendering)

texture capturing system using CNN (convolutional neural
network). To obtain training data, we built a virtual
capturing system in computer graphics environment. The
final trained CNN was able to generate a set of PBR
texture after inputting 4 photos of different lighting
conditions.

1 Introduce
Simulation of physical reflection on an object surface

plays a major role in CG (computer graphics) field. The
BRDF (bidirectional reflectance distribution function)
defines the reflectance of non-transparent objects at every
viewing angle and light direction. For complex materials,
such as woods, fabrics, rusty metal, etc., the BRDF would
suffer from unequal estimation in different surface
positions. Instead, SVBRDF (spatially varying BRDF)
provides various reflection properties which are usually
difficult to obtain. PBR involves complex reflection models
and it comprises textures as well as base color image,
normal map, and roughness map, etc., to achieve
SVBRDF. Nowadays, the commonly used reflection model
of SVBRDF is based on GGX model [1]. In most situations,
this approximate method can generate realistic
appearance as SVBRDF can do.

The traditional way to obtain the PBR textures in real
world is calculating the reflection properties based on
SVBRDF model. Ward [2] designed a gonio reflectometer
to capture the BRDF of objects. It measured the reflection
light intensity in every incident and observation directions.
This procedure is time consuming and a gonio
reflectometer is difficult to build in practice. Today, the
learning-based method is used in many application fields
with outstanding performance. There are several studies
utilizing the deep learning method to capture PBR texture.
For example, Deschaintre [3] used a cellphone to capture
different light condition photos of an object and used CNN
to generate the PBR Textures. But for obtaining training
data, it is still a difficult issue particularly for capturing the
PBR textures from the real world. In this study, we present
a dataset generating method using computer graphics
technique, and train a deep learning model with these data.
The final result shows that it is able to capture PBR
textures in the real world.

2 Experiment
The pipeline of our proposed PBR capturing system is

shown in Fig. 1. The input data are 4 photos, which have
different lighting directions from right, top, left and bottom
directions. These 4 photos will be stacked along the third
dimension as the input for next stage. The stacked
images are then fed into the approximation process and
U-net model, respectively. The final result is the sum of
the approximation result and the output of U-net. The
two-way process is a residual learning trick from the
image transform concept of deep learning like style
transfer and super resolution, etc. In other words, our
model focuses on generating the residual of final the
textures image, instead of the actual content of an entire
image.

Fig. 1 The pipeline of our PBR texture generator

2.1 Dataset
We decide to train our model with three types of

texture which are base color, roughness and normal map.
These textures play a major role in realistic rendering.
We collected 93 high resolution PBR textures (greater
than 10242 pixels and under CC0 license) from the
internet. To evaluate our model more comprehensively,
12 materials have been chosen as the test set, which
contain the common materials in the real world, such as
wood, metal, fabric, dirt and stone. We then crop each
material image into 9 equal parts and resize them to
square images of 2562 pixels via Lanczos4 interpolation.
Finally, we have 729 sets of data for training and 108
sets for testing.

To obtain the input of training data, we construct a
virtual capturing system by using a open software
named Blender. The layout of our configuration is shown

MVS1-1PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS, VOL.29, 2022

ISSN-L 1883-2490/29/1173 © 2022 ITE and SID IDW ’22 1173

in Fig. 2.
The sample in Fig. 2 is a square plane wrapped with

PBR texture. The camera is set right above the sample
and 4 light bulbs are surrounded the camera. The mask
with a square hole is used to identify the specific
measurement area.

Fig. 2 The configuration of our virtual capturing

system.

Fig. 3 shows one set of training data which are
rendered by the virtual camera in Fig. 2. In Fig. 3, A, B, C
and D are the images used as input; E, F and G are those
as the ground truth of output. As a result, we can train our
U-net to learn how the PBR texture is generated by these
4 lighting conditions photos.

Fig. 3 One set of training data. (A), (B), (C) and
(D): photos with light from 0 , 90 , 180 , and 270

; (E): base color map; (F): roughness map; (G):
normal map, (H): render example using (E), (F)

and (G).

2.2 Approximation Process
Three different textures have their own approximation

method to generate “rough” textures. In this part, we will

discuss how we implement each method. For clarity, we
use Ir, It, Il, and Ib to denote input images with light from
right, top, left, and bottom, and I refers to the all 4 input
images, Ab, Ar, and An as the rough texture of base color,
roughness, and normal vector.

For base color approximation, we simply calculate the
mean value of 4 input images by pixel, and use this mean
image as the rough base color texture. The calculation is
showed in Eq. 1. = (1)

The roughness in CG is relative to the microstructure
of an object surface. The bigger roughness means there
is a lot of micro geometry in the surface. When a light ray
hits a rough surface, it will bounce to every angle out
from the reflection point. According to this phenomenon,
if the range of lightness in 4 different lighting conditions
is large, it means the reflected light can only be observed
at specific viewing angle, and the roughness might be
low. On the other hand, if the range of lightness is small,
it means the reflection lights can be observed at many
viewing angles, so the roughness is relatively high.

We use Eq. 2 to express this relation between
roughness and the variance of lightness of input images.
This equation is not based on rigorous experiment, but
for residual training purpose, this approximation is
acceptable. = 1 (1) [() ()] (2)
L in Eq. 2 is the 4 images with only lightness

component, and the difference of maximum and
minimum stands for the range of lightness each pixel.
This range of lightness is inversely proportional to the
roughness. The Nz is the z component of the normal
vector at each pixel that has a range from 0 to 1. Nz can
be obtained from Eqs. 3-6, which will be discussed later.
According to Lambertian reflection, if the direction of the
normal vector is close to the +z direction more, the
lightness observed in same position with lights from
same polar angle will have lower variance. So, we use 1
- Nz as a weighting factor to fit this property.

In Lambertian reflection condition, if the light direction
is closer to the normal vector of the point, the lightness
would be higher. Based on the photometric method, we
can use this phenomenon to calculate the x and y
components by simply substrate lightness value of pixels
on two horizontal images (Ir, Il) and two vertical images
(It, Ib). But we cannot use the same calculation to get the
z component. We simply set the z component to the
constant value 0.5, then scale the x, y and z values to be
a normal vector. The whole calculation is shown in Eqs.
3-6.

1174 IDW ’22

= (3) = (4)
= 0.5 (5)

= [] = (6)

2.3 Architecture of model
Our model is based on U-net architecture which is

Ronneberger’s contribution [4], because it has the ability
to generate image data with multiple levels of detail. U-net
model has 2 paths – down sampling (hereinafter called
DS) and up sampling (hereinafter called US). The input
image data first are compressed to a low resolution feature
map by DS process, then expanded to original resolution
by US process. Our U-net contains 5 stages, the resolution
of each stage is respectively 2562, 1282, 642, 322, and 322;
and the depth of each stage is 64, 128, 256, 512, and 1024.
Each stage has 3 Resnet blocks with batch normalization,
and each mirror block pair in DS and US has skipped
connection between them.

The role of DS is to extract the features of the input
image. By contrast, US reconstructs the final output
residuals of textures. If the extracted-features have
enough information, all types of textures are able to be
reconstructed by this features. So, we use the same US to
extract the universal features and reconstruct the different
types of texture by individual US. The benefit of this
approach is that the size of the whole model is smaller than
the one which has individual US and DS for different types
of textures with not far-off performance in experiment. In
addition, the time on training and inference are as less as
a result of the less calculation.

2.4 Training processing
In training phase, we transformed the input data and the

target base color texture into CIELAB color space,
because minimizing the mean square error (MSE) of
output and target data in CIELAB color space is equal to

etween them, the final visual
appearance might be much closer to the target compare
to the one trained in sRGB color space. After the color

from [0, 255] to [-1, 1]. For the targets of roughness and
normal textures, we simply mapped their range to [-1, 1].

We use the mean square error between the
synthesized textures and target textures as the loss
function, and the Adam optimizer has been chosen to train

set to 0.9
and 0.999, and the learning rate is set to 0.001.

3 Result
We had chosen 12 materials to evaluate our model.

Fig. 4 shows the PSNR values of the testing dataset.
The yellow lines are for the approximated result, and the
blue lines are for the final result. The averaged PSNRs
are shown in Table 1. Over all, the final results which are
augmented by our deep learning model are better than
the approximated one.

Despite our model can generate fine base color and
normal textures, it doesn’t perform as well in generating
roughness maps. The averaged PSNRs of final
roughness textures are only reach 14.87, this causes
huge visual difference to the ground truth roughness
texture. But for rendering, the impact of roughness is not
as much as base color or normal, so the rendering result
may still look realistic.

Fig. 4 PSNR of the 12 testing samples.

Table. 1 Averaged PSNRs of the 12 testing samples.

result \ type Base color Roughness Normal
Approximate 19.42 14.00 24.74

Final 32.86 14.87 28.02

In addition, we captured photos of 6 materials in the
real world to test the practicality of our deep learning
model. The samples we chose is according to
descending order, says 2 different fabrics, smooth and
rough wood and 2 different stone look tiles, are shown
with rendering result in Fig. 5.

IDW ’22 1175

Fig. 5 Real photo testing. Left: the original photos

with the right side lighting; right: render results
of the synthesized textures.

The rendering results show that the synthetic textures

produced by the proposed method are able to reproduce
the visual appearance of these real world materials. But it
still has insufficiency which should be improved in the
future. For example, sample C and D are the different
sides of the same piece of wood, but one had been fine
sanded and waxed, another is wood with originally rough
surfaces. The ideal roughness texture might reproduce
this difference, but the synthesized textures seem unable
to do the same effect.

The reason for getting inferior performance at
roughness might be the lack of information caused by only
using 4 orientations of lights on input data. We think this is
because a complex material has various microstructures
on different surface points, and that means more lights
with different polar angles are required.

4 Conclusions
This study utilizes U-net deep learning model to

generate PBR textures from photos with different lighting
conditions. The current result shows that it has potential to
generate accurate textures, such as layers of base color
and normal.

Furthermore, we use these virtual training data to
generate PBR textures. This procedure has 2 benefits.
First, we can still obtain the training data with different
system configurations. Secondly, we don’t need to use a
real instrument like a gonio reflectometer to capture the
ground truth data. These features make our PBR texture
generator much easier and more flexible to produce
realistic effects.

Our model was trained using only 81 materials in this
study. With the addition of more materials and lighting
conditions, a more powerful and robust model can be
trained. On the basis of this study, we are also developing
a PBR texture capture system that does not require more

than a single shot in the future.

References
[1] B. Walter, S. R. Marschner, H. Li, and K. E.

Torrance, (2007). “Microfacet Models for Refraction
through Rough Surfaces.” Proceedings of the 18th
Eurographics Conference on Rendering
Techniques, 195-206 (2007).

[2] G. J. Ward, “Measuring and modeling anisotropic
reflection.” ACM SIGGRAPH Computer Graphics,
26(2), 265-272 (1992).

[3] V. Deschaintre, M. Aittala, F. Durand, G. Drettakis,
and A. Bousseau, “Flexible SVBRDF Capture with a
Multi Image Deep Network.” Computer Graphics
Forum, 38(4), 1-13 (2019).

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net:
Convolutional Networks for Biomedical Image
Segmentation.” http://arxiv.org/abs/1505.04597
(2015)

1176 IDW ’22

